Real-Time Workshop® 6
Reference

MATLAB
SIMULINK"

‘\The MathWorks

Accelerating the pace of engineering and science

LN

How to Contact The MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Real-Time Workshop Reference
© COPYRIGHT 2006-2007 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined

in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History

March 2006 Online only New for Version 6.4

September 2006 Online only Updated for Version 6.5 (Release 2006b)
March 2007 Online only Updated for Version 6.6 (Release 2007a)

Functions — By Category

Build Information oL, 1-2
Project Documentation 14
Rapid Simulation 14
Target Language Compiler Library 14

Functions — Alphabetical List

2

Simulink Block Support

3

Blocks — By Category

q |

Custom Codettt 4-2
Interrupt Templates 4-3

S-Function Target 4-4

vi

Contents

VXWOrKs ... o e 4-5

Blocks — Alphabetical List

5

Configuration Parameter Reference

6

Configuration Parameters Dialog Box Reference

7

Solver ... e e 7-2
Start time e e 7-2
Stoptimeo e e 7-3
117 oY 7-3
Tasking mode for periodic sample times 7-5

Optimization i, 7-8
Blockreduction i, 7-8
Conditional input branch execution 7-9
Implement logic signals as boolean data (vs. double) 7-10
Signal storagereuse, 7-11
Inline parameters 7-12
Application lifespan (days) 7-14
Enable local block outputs 7-15
Reuse block outputs 7-16
Ignore integer downcasts in folded expressions 7-17
Inline invariant signals 7-18
Eliminate superfluous temporary variables (Expression

folding)cvit i e e 7-19
Loop unrolling threshold 7-19
Remove code from floating-point to integer conversions that

wraps out-of-range values 7-20

Diagnostics i e 7-22

Model Verification block enabling 7-22
Hardware Implementation 7-23
Device type ..o e e 7-23
Number of bits: char 7-27
Number of bits: short 7-28
Number of bits: int i ... 7-28
Number of bits: long i ... 7-29
Number of bits: native word size 7-30
Byteordering i 7-31
Signed integer division roundsto 7-32
Shift right on a signed integer as arithmetic shift 7-32
Emulation hardware (code generation only) 7-33
Real-Time Workshop (General) 7-35
System targetfile 7-35
Languageoiiiiiiiiiiiiiii e 7-36
Generate HTML reportcciiiiiinno... 7-37
Launch report automatically 7-38
TLC Options ... vvi ittt ittt ettt e e 7-39
Generatemakefile 7-40
Makecommandcciiiiiiitetrnnie., 7-40
Template makefile 7-42
Generatecodeonly i ... 7-43
Build/Generatecode 7-44
Commentscc0iiiiiiiiiennnnnnnnnnns 7-45
Include comments i ... 7-45
Simulink block comments 7-46
Show eliminated blocks 7-46
Verbose comments for SimulinkGlobal storage class 7-47
Symbols e 7-49
Maximum identifierlength 7-49
CustomCode 7-51
Sourcefile i e 7-51
Headerfile ittt 7-51
Initialize function 7-52
Terminate function 7-53
Include directories i 7-53

vii

viii

Contents

Source files i e 7-54

Librariesoiiiiiiii i e e 7-55
Debug i e 7-56
Verbosebuild i, 7-56
Retain .rtwfile i, 7-57
Profile TLC i e i 7-57
Start TLC debugger when generating code 7-58
Start TLC coverage when generatingcode 7-59
Enable TLC assertioncciiiiiiinnnnn... 7-60
Interface i, 7-61
Target floating-point math environment 7-61
Utility function generation 7-62
MAT-file variable name modifier 7-63
Interface i i 7-64
Signalsin CAPI 7-65
Parametersin CAPI 7-66
Transport layerc. 0., 7-66
MEX-file argumentsc0iiiiiiiiiia.. 7-67
Static memory allocation 7-68
Index

Functions — By Category

Build Information (p. 1-2)

Project Documentation (p. 1-4)
Rapid Simulation (p. 1-4)

Target Language Compiler Library
(p. 1-4)

Set up and manage model’s build
information

Document generated code
Get model’s parameter structures

Optimize code generated for model’s
blocks

l Functions — By Category

Build Information

addCompileFlags

addDefines

addIncludeFiles

addIncludePaths

addLinkFlags

addLinkObjects

addSourceFiles

addSourcePaths

findIncludeFiles

getCompileFlags

getDefines

getIncludeFiles

getIncludePaths

getLinkFlags

getSourceFiles

Add compiler options to model’s
build information

Add preprocessor macro definitions
to model’s build information

Add include files to model’s build
information

Add include paths to model’s build
information

Add link options to model’s build
information

Add link objects to model’s build
information

Add source files to model’s build
information

Add source paths to model’s build
information

Find and add include (header) files
to build information object

Compiler options from model’s build
information

Preprocessor macro definitions from
model’s build information

Include files from model’s build
information

Include paths from model’s build
information

Link options from model’s build
information

Source files from model’s build
information

Build Information

getSourcePaths

packNGo

updateFilePathsAndExtensions

updateFileSeparator

Source paths from model’s build
information

Package model code in zip file for
relocation

Update files in model’s build
information with missing paths and
file extensions

Change file separator used in model’s
build information

l Functions — By Category

Project Documentation

rtwreport Document generated code

Rapid Simulation

rsimgetrtp Model’s global parameter structure

Target Language Compiler Library

See the “TLC Function Library Reference” in the Real-Time Workshop Target
Language Compiler documentation.

14

Functions — Alphabetical
List

addCompileFlags

Purpose

Syntax

Arguments

Add compiler options to model’s build information

addCompileFlags(buildinfo, options, groups)

groups is optional.

buildinfo
Build information returned by RTW.Buildinfo.

options
A character array or cell array of character arrays that specifies
the compiler options to be added to the build information. The
function adds each option to the end of a compiler option vector. If
you specify multiple options within a single character array, for
example '-Zi -Wall', the function adds the string to the vector
as a single element. For example, if you add '-Zi -wall' and
then '-03', the vector consists of two elements, as shown below.

'.7i -Wall' '-03"

groups (optional)
A character array or cell array of character arrays that groups
specified compiler options. You can use groups to

® Document the use of specific compiler options

¢ Retrieve or apply collections of compiler options

You can apply
® A single group name to a compiler option
® A single group name to multiple compiler options

® Multiple group names to collections of compiler options

addCompileFlags
|

To... Specify groups as a...

Apply one group Character array. To specify compiler
name to all compiler options to be used in the standard
options Real-Time Workshop makefile build

process, specify the character array
'OPTS' or 'OPT_OPTS"'.

Apply different group Cell array of character arrays such that

names to compiler the number of group names matches

options the number of elements you specify for
options. Available for nonmakefile
build environments only.

Description The addCompileFlags function adds specified compiler options to the
model’s build information. Real-Time Workshop stores the compiler
options in a vector. The function adds options to the end of the vector
based on the order in which you specify them.

In addition to the required buildinfo and options arguments, you can
use an optional groups argument to group your options.

Examples ® Add the compiler option -03 to build information myModelBuildInfo
and place the option in the group MemOpt.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, '-03', 'MemOpt');

® Add the compiler options -Zi and -Wall to build information
myModelBuildInfo and place the options in the group Debug.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, '-Zi -Wall', 'Debug');

addCompileFlags

See Also

¢ Add the compiler options -Zi, -Wall, and -03 to build information
myModelBuildInfo. Place the options -Zi and -Wall in the group
Debug and option -03 in the group MemOpt.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags (myModelBuildInfo, {'-Zi -Wall' '-03'},
{'Debug' 'MemOpt'});

addDefines, addLinkFlags
“Programming a Post Code Generation
Command”

addDefines

Purpose Add preprocessor macro definitions to model’s build information

Syntax addDefines(buildinfo, macrodefs, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

macrodefs
A character array or cell array of character arrays that specifies
the preprocessor macro definitions to be added to the object. The
function adds each definition to the end of a compiler option vector.
If you specify multiple definitions within a single character array,
for example ' -DRT -DDEBUG', the function adds the string to the
vector as a single element. For example, if you add ' -DPROTO
-DDEBUG' and then '-DPRODUCTION', the vector consists of two
elements, as shown below.

' -DPROTO -DDEBUG' ' -DPRODUCTION'

groups (optional)
A character array or cell array of character arrays that groups
specified definitions. You can use groups to

® Document the use of specific macro definitions

¢ Retrieve or apply groups of macro definitions

You can apply
* A single group name to an macro definition
® A single group name to multiple macro definitions

® Multiple group names to collections of multiple macro
definitions

addDefines

Description

Examples

To... Specify groups as a...

Apply one group Character array. To specify macro
name to all macro definitions to be used in the standard
definitions Real-Time Workshop makefile build

process, specify the character array
'OPTS' or 'OPT_OPTS"'.

Apply different group Cell array of character arrays such that

names to macro the number of group names matches

definitions the number elements you specify for
macrodefs. Available for nonmakefile
build environments only.

The addDefines function adds specified preprocessor macro definitions
to the model’s build information. Real-Time Workshop stores the
definitions in a vector. The function adds definitions to the end of the
vector based on the order in which you specify them.

In addition to the required buildinfo and macrodefs arguments, you
can use an optional groups argument to group your options.

® Add the macro definition -DPRODUCTION to build information
myModelBuildInfo and place the definition in the group Release.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo, '-DPRODUCTION', 'Release’);

® Add the macro definitions -DPROTO and -DDEBUG to build information
myModelBuildInfo and place the definitions in the group Debug.

myModelBuildInfo = RTW.BuildInfo;
addDefines (myModelBuildInfo, '-DPROTO -DDEBUG', 'Debug');

addDefines
|

® Add the compiler definitions -DPROTO, -DDEBUG, and -DPRODUCTION,
to build information myModelBuildInfo. Group the definitions

-DPROTO and -DDEBUG with the string Debug and the definition
-DPRODUCTION with the string Release.

myModelBuildInfo = RTW.BuildInfo;

addDefines (myModelBuildInfo, {'-DPROTO -DDEBUG'
' -DPRODUCTION'}, {'Debug' 'Release'});
See Also addCompileFlags, addLinkFlags

“Programming a Post Code Generation Command”

addincludeFiles

Purpose Add include files to model’s build information

Syntax addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.
filenames

A character array or cell array of character arrays that specifies
names of include files to be added to the build information. The

function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that
® You specify as input
¢ Already exist in the include file vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.
paths (optional)
A character array or cell array of character arrays that specifies
paths to the include files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.
groups (optional)
A character array or cell array of character arrays that groups
specified include files. You can use groups to
® Document the use of specific include files

® Retrieve or apply groups of include files

addincludeFiles

Description

You can apply

¢ A single group name to an include file

® A single group name to multiple include files

¢ Multiple group names to collections of multiple include files

TO...

Apply one group name
to all include files

Apply different group
names to include files

Specify groups as a...

Character array.

Cell array of character arrays such
that the number of group names that
you specify matches the number of
elements you specify for filenames.

The addIncludeFiles function adds specified include files to the
model’s build information. Real-Time Workshop stores the include files
in a vector. The function adds the filenames to the end of the vector in

the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify each
optional argument as a character array or a cell array of character

arrays.

If You Specify an Optional
Argument as a...

Character array

Cell array of character arrays

The Function...

Applies the character array to all
include files it adds to the build
information

Pairs each character array with a
specified include file. Thus, the length
of the cell array must match the
length of the cell array you specify for
filenames.

addincludeFiles

If you choose to specify groups, but omit paths, specify a null string
("") for paths

Examples ¢ Add the include file mytypes.h to build information
myModelBuildInfo and place the file in the group SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,...
‘mytypes.h', 'SysFiles');

¢ Add the include files etc.h and etc_private.h to build information

myModelBuildInfo and place the files in the group AppFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,...
{'etc.h' 'etc_private.h'}, 'AppFiles');

¢ Add the include files etc.h, etc_private.h, and mytypes.h to
build information myModelBuildInfo. Group the files etc.h and
etc_private.h with the string AppFiles and the file mytypes.h
with the string SysFiles.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo,...
{'etc.h' 'etc_private.h' 'mytypes.h'},...
{'AppFiles' 'AppFiles' 'SysFiles'});

See Also addIncludePaths, addSourceFiles, addSourcePaths,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

2-10

addincludePaths

Purpose Add include paths to model’s build information

Syntax addIncludePaths(buildinfo, paths, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

paths
A character array or cell array of character arrays that specifies

include file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.

The function removes duplicate include file entries that

® You specify as input

¢ Already exist in the include path vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

groups (optional)
A character array or cell array of character arrays that groups
specified include paths. You can use groups to

® Document the use of specific include paths

® Retrieve or apply groups of include paths

You can apply
* A single group name to an include path
* A single group name to multiple include paths

e Multiple group names to collections of multiple include paths

2-11

addincludePaths

2-12

Description

To... Specify groups as a...

Apply one group Character array.

name to all include

paths

Apply different group Cell array of character arrays such that
names to include the number of group names that you
paths specify matches the number of elements

you specify for paths.

The addIncludePaths function adds specified include paths to the
model’s build information. Real-Time Workshop stores the include
paths in a vector. The function adds the paths to the end of the vector in
the order that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument. You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to all
include paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified include path. Thus, the
length of the cell array must match
the length of the cell array you specify
for paths.

addincludePaths
|

Examples ¢ Add the include path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
"/etcproj/etc/etc_build');

® Add the include paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'}, 'etc');

® Add the include paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/lib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/1lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;

addIncludePaths(myModelBuildInfo,...

{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
"/common/1lib'}, {'etc' 'etc' 'shared'});

See Also addIncludeFiles, addSourceFiles, addSourcePaths,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

2-13

addLinkFlags

Purpose Add link options to model’s build information

Syntax addLinkFlags (buildinfo, options, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

options
A character array or cell array of character arrays that specifies
the linker options to be added to the build information. The
function adds each option to the end of a linker option vector. If
you specify multiple options within a single character array, for
example ' -MD -Gy', the function adds the string to the vector as a
single element. For example, if you add '-MD -Gy' and then '-T"',
the vector consists of two elements, as shown below.

'-MD -Gy' LT

groups (optional)
A character array or cell array of character arrays that groups
specified linker options. You can use groups to

® Document the use of specific linker options

¢ Retrieve or apply groups of linker options

You can apply
® A single group name to a compiler option
® A single group name to multiple compiler options

® Multiple group names to collections of multiple compiler options

2-14

addLinkFlags
|

To... Specify groups as a...

Apply one group Character array. To specify linker
name to all linker options to be used in the standard
options Real-Time Workshop makefile build

process, specify the character array
'OPTS' or 'OPT_OPTS".

Apply different Cell array of character arrays such that
group names to the number of group names matches
linker options the number of elements you specify for

options. Available for nonmakefile
build environments only.

Description The addLinkFlags function adds specified linker options to the model’s
build information. Real-Time Workshop stores the linker options in a
vector. The function adds options to the end of the vector based on the
order in which you specify them.

In addition to the required buildinfo and options arguments, you can
use an optional groups argument to group your options.

Examples ® Add the linker - T option to build information myModelBuildInfo and
place the option in the group Temp.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, '-T','Temp');

¢ Add the linker options -MD and -Gy to build information
myModelBuildInfo and place the options in the group Debug.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, '-MD -Gy', 'Debug');

2-15

addLinkFlags

¢ Add the linker options -MD, -Gy, and -T to build information
myModelBuildInfo. Place the options -MD and-Gy in the group Debug
and the option -T in the groupTemp.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},
{'Debug' 'Temp'});

See Also addCompileFlags, addDefines
“Programming a Post Code Generation
Command”

2-16

addLinkObjects
|

Purpose Add link objects to model’s build information

Syntax addLinkObjects(buildinfo, linkobjs, paths, priority,
precompiled, linkonly, groups)

All arguments except buildinfo , 1inkobjs, and paths are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

linkobjs
A character array or cell array of character arrays that specifies
the filenames of linkable objects to be added to the build
information. The function adds the filenames that you specify
in the function call to a vector that stores the object filenames
in priority order. If you specify multiple objects that have the
same priority (see priority below), the function adds them to the
vector based on the order in which you specify the object filenames
in the cell array.

The function removes duplicate link objects that

® You specify as input

® Already exist in the linkable object filename vector

e Have a path that matches the path of a matching linkable
object filename

A duplicate entry consists of an exact match of a path string and

corresponding linkable object filename.

paths (optional)
A character array or cell array of character arrays that specifies
paths to the linkable objects. If you specify a character array, the
path string applies to all linkable objects.

2-17

addLinkObjects

priority (optional)
A numeric value or vector of numeric values that indicates the
relative priority of each specified link object. Lower values have
higher priority. The default priority is 1000.

precompiled (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is precompiled.

linkonly (optional)
The logical value true or false or a vector of logical values that
indicates whether each specified link object is to be only linked. If
you set this argument to false, the function also adds a rule to
the makefile for building the objects.

groups (optional)
A character array or cell array of character arrays that groups
specified link objects. You can use groups to

® Document the use of specific link objects

® Retrieve or apply groups of link objects

You can apply
* A single group name to a linkable object
® A single group name to multiple linkable objects

e Multiple group name to collections of multiple linkable objects

To... Specify groups a...
Apply one group Character array.
name to all link

objects

Apply different group Cell array of character arrays such that

names to link objects the number of group names matches
the number elements you specify for
linkobjs.

2-18

addLinkObjects

Description

The addLinkObjects function adds specified link objects to the model’s
build information. Real-Time Workshop stores the link objects in a
vector in relative priority order. If multiple objects have the same
priority or you do not specify priorities, the function adds the objects to
the vector based on the order in which you specify them.

In addition to the required buildinfo and linkobjs arguments,

you can specify any combination of the optional arguments paths,
priority, precompiled, 1inkable, and groups. You can specify paths
and groups as a character array or a cell array of character arrays.

If You Specify paths or The Function...
groups as a...

Character array Applies the character array to
all objects it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified object. Thus, the length
of the cell array must match the
length of the cell array you specify for
linkobjs.

Similarly, you can specify priority, precompiled, and 1inkable as a
value or vector of values.

If You Specify priority, The Function...
precompiled, or linkable

as a...

Value Applies the value to all objects it adds
to the build information.

Vector of values Pairs each value with a specified

object. Thus, the length of the vector
must match the length of the cell
array you specify for 1inkobjs.

2-19

addLinkObjects

Examples

2-20

For any optional argument you choose to omit between 1inkobjs and
any other argument, specify a null string (' '). For example, to specify
that all objects are precompiled, without specifying paths or priorities,
you might call addLinkObjects as

addLinkObjects(myBuildInfo, {'test1' test2' 'test3'},...
"yt true);

¢ Add the linkable objects 1ibobj1 and 1ibobj2 to build information
myModelBuildInfo and set the priorities of the objects to 26 and 10,
respectively. Since 1ibobj2 is assigned the lower numeric priority
value, and thus has the higher priority, the function orders the
objects such that 1ibobj2 precedes 1ibobj1 in the vector.

myModelBuildInfo = RTW.BuildInfo;

addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...

{'/proj/lib/1ib1" '/proj/lib/1lib2'}, [26 10]);

¢ Add the linkable objects 1ibobj1 and 1ibobj2 to build information
myModelBuildInfo. Mark both objects as linkable. Since priorities
are not specified, the function adds the objects to the vector in the
order specified.

myModelBuildInfo = RTW.BuildInfo;

addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...

{'/proj/lib/1ib1"' '/proj/lib/1lib2'}, [26 10],...
false, true);

¢ Add the linkable objects 1ibobj1 and 1ibobj2 to build information
myModelBuildInfo. Set the priorities of the objects to 26 and 10,
respectively. Mark both objects as precompiled, but not linkable,
and group them MyTest.

myModelBuildInfo = RTW.BuildInfo;

addLinkObjects(myModelBuildInfo, {'libobj1' 'libobj2'},...

{'/proj/lib/1lib1"' '/proj/lib/lib2'}, [26 10],...
true, false, 'MyTest');

addLinkObjects
|

See Also “Programming a Post Code Generation Command”

2-21

addSourceFiles

2-22

Purpose Add source files to model’s build information

Syntax addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.
filenames

A character array or cell array of character arrays that specifies
names of the source files to be added to the build information. The

function adds the filenames to the end of a vector in the order that
you specify them.

The function removes duplicate source file entries that
® You specify as input
¢ Already exist in the source file vector

¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.
paths (optional)
A character array or cell array of character arrays that specifies
paths to the source files. The function adds the paths to the end of
a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.
groups (optional)
A character array or cell array of character arrays that groups
specified source files. You can use groups to
® Document the use of specific source files

® Retrieve or apply groups of source files

addSourceFiles

You can apply
® A single group name to a source file
* A single group name to multiple source files

¢ Multiple group names to collections of multiple source files

To... Specify group as a...

Apply one group name Character array.
to all source files

Apply different group Cell array of character arrays such

names to source files that the number of group names that
you specify matches the number of
elements you specify for filenames.

Description The addSourceFiles function adds specified source files to the model’s
build information. Real-Time Workshop stores the source files in a
vector. The function adds the filenames to the end of the vector in the
order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify each
optional argument as a character array or a cell array of character
arrays.

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to all
source files it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified source file. Thus, the length
of the cell array must match the
length of the cell array you specify for
filenames.

2-23

addSourceFiles

If you choose to specify groups, but omit paths, specify a null string
("") for paths

Examples ¢ Add the source file driver.c to build information myModelBuildInfo

and place the file in the group Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, 'driver.c', ''
'‘Drivers');

youon

Add the source files test1.c and test2.c to build information
myModelBuildInfo and place the files in the group Tests.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...
{'test1.c' 'test2.c'}, '', 'Tests');

Add the source files testi1.c, test2.c, and driver.c to build
information myModelBuildInfo. Group the files test1.c and
test2.c with the string Tests and the file driver.c with the string
Drivers.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...
{'test1.c' 'test2.c' 'driver.c'}, '',...
{'Tests' 'Tests' 'Drivers'});

See Also addIncludeFiles, addIncludePaths, addSourcePaths,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

2-24

addSourcePaths
|

Purpose Add source paths to model’s build information

Syntax addSourcePaths(buildinfo, paths, groups)

groups is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

paths
A character array or cell array of character arrays that specifies
source file paths to be added to the build information. The
function adds the paths to the end of a vector in the order that
you specify them.
The function removes duplicate source file entries that
® You specify as input
¢ Already exist in the source path vector
¢ Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

Note Real-Time Workshop does not check whether a specified
path string is valid.

groups (optional)
A character array or cell array of character arrays that groups
specified source paths. You can use groups to

® Document the use of specific source paths

® Retrieve or apply groups of source paths

2-25

addSourcePaths

You can apply
® A single group name to a source path
® A single group name to multiple source paths

¢ Multiple group names to collections of multiple source paths

To... Specify groups as a...

Apply one group name Character array.
to all source paths

Apply different group Cell array of character arrays such

names to source paths that the number of group names that
you specify matches the number of
elements you specify for paths.

Description The addSourcePaths function adds specified source paths to the model’s
build information. Real-Time Workshop stores the source paths in a
vector. The function adds the paths to the end of the vector in the order
that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument . You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional The Function...
Argument as a...

Character array Applies the character array to all
source paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified source path. Thus, the
length of the character array or cell
array must match the length of the
cell array you specify for paths.

2-26

addSourcePaths

Note Real-Time Workshop does not check whether a specified path
string is valid.

Examples ¢ Add the source path /etcproj/etc/etc_build to build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
"/etcproj/etc/etc_build');

¢ Add the source paths /etcproj/etclib and
/etcproj/etc/etc_build to build information myModelBuildInfo
and place the files in the group etc.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo,...
{'/etcproj/etclib' '/etcproj/etc/etc_build'}, 'etc');

® Add the source paths /etcproj/etclib, /etcproj/etc/etc_build,
and /common/1ib to build information myModelBuildInfo. Group the
paths /etc/proj/etclib and /etcproj/etc/etc_build with the
string etc and the path /common/1lib with the string shared.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo,...

{'/etc/proj/etclib' '/etcproj/etc/etc_build'...
"/common/lib'}, {'etc' 'etc' 'shared'});

See Also addIncludeFiles, addIncludePaths, addSourceFiles,
updateFilePathsAndExtensions, updateFileSeparator
“Programming a Post Code Generation Command”

2-27

findIincludeFiles

2-28

Purpose

Syntax

Arguments

Description

Find and add include (header) files to build information object

findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.

buildinfo
Build information returned by RTW.Buildinfo.

extPatterns (optional)
A cell array of character arrays that specify patterns of file name
extensions for which the function is to search. Each pattern

® Must start with *.
¢ Can include any combination of alphanumeric and underscore
() characters

The default pattern is *.h.

Examples of valid patterns include

*.h
*.hpp

.X

The findIncludeFiles function

e Searches for include files, based on specified file name extension
patterns, in all source and include paths recorded in a model’s build
information object

® Adds the files found, along with their full paths, to the build
information object

¢ Deletes duplicate entries

findIincludeFiles

Examples Find all include files with filename extension .h that are in build
information object myModelBuildInfo, and add the full paths for any
files found to the object.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {fullfile(pwd,...
‘mycustomheaders')}, 'myheaders');
findIncludeFiles(myModelBuildInfo);
headerfiles = getIncludeFiles(myModelBuildInfo, true, false);
headerfiles
headerfiles =

'W:\work\mycustomheaders\myheader.h'

See Also “Programming a Post Code Generation Command”

2-29

getCompileFlags

Purpose

Syntax

Arguments

Returns

Description

Examples

2-30

Compiler options from model’s build information

options=getCompileFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

buildinfo
Build information returned by RTW.Buildinfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of compiler flags you do not want the function to return.

Compiler options stored in the model’s build information.

The getCompileFlags function returns compiler options stored in
the model’s build information. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude
groups of options the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

® Get all compiler options stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-03'},...

{'Debug' 'MemOpt'});

getCompileFlags
|

compflags=getCompileFlags(myModelBuildInfo);
compflags

compflags =
'-Zi -Wall' '-03'

® Get the compiler options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-03'},...
{'Debug' 'MemOpt'});
compflags=getCompileFlags(myModelBuildInfo, 'Debug');
compflags

compflags =
'-Zi -Wall'

¢ Get all compiler options stored in build information
myModelBuildInfo except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addCompileFlags(myModelBuildInfo, {'-Zi -Wall' '-03'},...
{'Debug' 'MemOpt'});
compflags=getCompileFlags(myModelBuildInfo, '', 'Debug');
compflags

compflags =

|_03|

See Also getDefines, getLinkFlags

“Programming a Post Code Generation
Command”

2-31

getDefines

2-32

Purpose

Syntax

Arguments

Returns

Preprocessor macro definitions from model’s build information

[macrodefs, identifiers, values]=getDefines(buildinfo,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

buildinfo
Build information returned by RTW.Buildinfo.

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of macro definitions you do not want the function to return.

Preprocessor macro definitions stored in the model’s build information.
The function returns the macro definitions in three vectors.

Vector Description

macrodef Complete macro definitions with -D
prefix

identifiers Names of the macros

values Values assigned to the macros (anything

specified to the right of the first equals
sign) ; the default is an empty string (' ')

getDefines

Description

Examples

The getDefines function returns preprocessor macro definitions
stored in the model’s build information. When the function returns a
definition, it automatically

® Prepends a -D to the definition if the -D was not specified when the
definition was added to the build information

® Changes a lowercase -d to -D

Using optional includeGroups and excludeGroups arguments, you
can selectively include or exclude groups of definitions the function
is to return.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

¢ Get all preprocessor macro definitions stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addDefines (myModelBuildInfo, {'PROTO=first' '-DDEBUG'...
"test' '-dPRODUCTION'}, {'Debug' 'Debug' 'Debug’...
'Release'});

[defs names values]=getDefines(myModelBuildInfo);

defs

defs =

' -DPROTO=first' ' -DDEBUG' '-Dtest’ ' -DPRODUCTION'
names
names =

'"PROTO'

'DEBUG

"test’
'PRODUCTION'

2-33

getDefines

values
values =

'first'

® Get the preprocessor macro definitions stored with the group name
Debug in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addDefines(myModelBuildInfo, {'PROTO=first' '-DDEBUG'...
'test' '-dPRODUCTION'}, {'Debug' 'Debug' 'Debug'...

'Release'});
[defs names values]=getDefines(myModelBuildInfo, 'Debug');
defs
defs =
' -DPROTO=first' ' -DDEBUG' '-Dtest’

® Get all preprocessor macro definitions stored in build information
myModelBuildInfo except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;

addDefines (myModelBuildInfo, {'PROTO=first' '-DDEBUG'...
'test' '-dPRODUCTION'}, {'Debug' 'Debug' 'Debug'...
'Release'});

[defs names values]=getDefines(myModelBuildInfo, 'Debug');
defs

defs =

' -DPRODUCTION'

2-34

getDefines

See Also getCompileFlags, getLinkFlags
“Programming a Post Code Generation Command”

2-35

getincludeFiles

2-36

Purpose Include files from model’s build information

Syntax files=getIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation directory.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include files you do not want the function to return.

getincludeFiles

Returns

Description

Examples

Names of include files stored in the model’s build information.

The getIncludeFiles function returns the names of include files
stored in the model’s build information. Use the concatenatePaths and
replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of include files the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

® Get all include paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;

addIncludeFiles (myModelBuildInfo, {'etc.h' 'etc_private.h'...
'mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...
'/common/1lib'}, {'etc' 'etc' 'shared'});
incfiles=getIncludeFiles(myModelBuildInfo, true, false);
incfiles

incfiles =

[1x22 char] [1x36 char] [1x21 char]

2-37

getincludeFiles

® Get the names of include files in group etc that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludeFiles(myModelBuildInfo, {'etc.h' 'etc_private.h'...
‘mytypes.h'}, {'/etc/proj/etclib' '/etcproj/etc/etc_build'...
‘/common/lib'}, {'etc' 'etc' 'shared'});
incfiles=getIncludeFiles(myModelBuildInfo, false, false,...

‘etc');
incfiles
incfiles =
'etc.h’ ‘etc_private.h'
See Also getIncludePaths, getSourceFiles, getSourcePaths

“Programming a Post Code Generation Command”

2-38

getincludePaths

Purpose

Syntax

Arguments

Returns

Description

Include paths from model’s build information

files=getIncludePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.
buildinfo
Build information returned by RTW.Buildinfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $ (MATLAB_ROOT)
with the absolute path string for your
MATLAB installation directory.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of include paths you do not want the function to return.

Paths of include files stored in the model’s build information.

The getIncludePaths function returns the names of include file paths
stored in the model’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of include file paths the function returns.

2-39

getincludePaths
|

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

Examples ¢ Get all include paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...
"/etcproj/etc/etc_build' '/common/lib'},...

{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false);
incpaths

incpaths =
"\etc\proj\etclib' [1x22 char] "\common\1lib'

® Get the paths in group shared that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addIncludePaths(myModelBuildInfo, {'/etc/proj/etclib'...
"/etcproj/etc/etc_build' '/common/lib'},...

{'etc' 'etc' 'shared'});
incpaths=getIncludePaths(myModelBuildInfo, false, 'shared');

incpaths

incpaths =

"\common\1lib"'"'

See Also getIncludeFiles, getSourceFiles, getSourcePaths
“Programming a Post Code Generation Command”

2-40

getLinkFlags
|

Purpose Link options from model’s build information
Syntax options=getLinkFlags (buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

includeGroups (optional)
A character array or cell array that specifies groups of linker flags
you want the function to return.

excludeGroups (optional)
A character array or cell array that specifies groups of linker
flags you do not want the function to return. To exclude groups
and not include specific groups, specify an empty cell array (' ')
for includeGroups.

Returns Linker options stored in the model’s build information.

Description The getLinkFlags function returns linker options stored in the model’s
build information. Using optional includeGroups and excludeGroups
arguments, you can selectively include or exclude groups of options
the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

2-41

getLinkFlags

Examples ® Get all linker options stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},...
{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo);

linkflags

linkflags =
'-MD -Gy' LT

® Get the linker options stored with the group name Debug in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},...
{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo, {'Debug'});
linkflags

linkflags =
'"-MD -Gy'

® Get all compiler options stored in build information
myModelBuildInfo except those with the group name Debug.

myModelBuildInfo = RTW.BuildInfo;
addLinkFlags(myModelBuildInfo, {'-MD -Gy' '-T'},...
{'Debug' 'MemOpt'});
linkflags=getLinkFlags(myModelBuildInfo, '', {'Debug'});
linkflags

linkflags =

|_T|

2-42

getLinkFlags
|

See Also getCompileFlags, getDefines
“Programming a Post Code Generation
Command”

2-43

getSourceFiles

2-44

Purpose Source files from model’s build information

Syntax srcfiles=getSourceFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

concatenatePaths
The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT)
with the absolute path string for your
MATLAB installation directory.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source files you do not want the function to return.

getSourceFiles

Returns Names of source files stored in the model’s build information.

Description The getSourceFiles function returns the names of source files stored
in the model’s build information. Use the concatenatePaths and
replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns. Using
optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of source files the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

Examples ¢ Get all source paths and filenames stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo,...

{'test1.c' 'test2.c' 'driver.c'}, '',...

{'Tests' 'Tests' 'Drivers'});
srcfiles=getSourceFiles(myModelBuildInfo, false, false);
srcfiles

srcfiles =

"testl.c' 'test2.c' 'driver.c'

2-45

getSourceFiles

® Get the names of source files in group tests that are stored in build
information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourceFiles(myModelBuildInfo, {'testi.c’

‘test2.c'...
‘driver.c'}, {'/proj/test1' '/proj/test2'...

"/drivers/src'}, {'tests', 'tests', 'drivers'});
incfiles=getSourceFiles(myModelBuildInfo, false, false,
"tests');
incfiles
incfiles =

"testi.c' 'test2.c'

See Also getIncludeFiles, getIncludePaths, getSourcePaths

“Programming a Post Code Generation Command”

2-46

getSourcePaths

Purpose

Syntax

Arguments

Returns

Description

Source paths from model’s build information

files=getSourcePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

buildinfo
Build information returned by RTW.Buildinfo.

replaceMatlabroot
The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation directory.

false Does not replace the token
$ (MATLAB_ROOT).

includeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you want the function to return.

excludeGroups (optional)
A character array or cell array of character arrays that specifies
groups of source paths you do not want the function to return.

Paths of source files stored in the model’s build information.

The getSourcePaths function returns the names of source file paths
stored in the model’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups
and excludeGroups arguments, you can selectively include or exclude
groups of source file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups,
specify a null string (' ') for includeGroups.

2-47

getSourcePaths

Examples ® Get all source paths stored in build information myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {'/proj/testi'...
"/proj/test2' '/drivers/src'}, {'tests' 'tests'...
‘drivers'});
srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths

srcpaths =
"\proj\test1' "\proj\test2' ‘“\drivers\src'

¢ Get the paths in group tests that are stored in build information
myModelBuildInfo.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, {'/proj/test1'...
"/proj/test2' '/drivers/src'}, {'tests' 'tests'...
‘drivers'});

srcpaths=getSourcePaths(myModelBuildInfo, true, 'tests');
srcpaths

srcpaths =
"\proj\testt' "\proj\test2'

® Get a path stored in build information myModelBuildInfo. First get
the path without replacing $ (MATLAB_ROOT) with an absolute path,
then get it with replacement. The MATLAB root directory in this
case is \\myserver\myworkspace\matlab.

myModelBuildInfo = RTW.BuildInfo;
addSourcePaths(myModelBuildInfo, fullfile(matlabroot,...

‘'rtw', 'c', 'libsrc'));
srcpaths=getSourcePaths(myModelBuildInfo, false);
srcpaths{:}

2-48

getSourcePaths

ans =
$(MATLAB_ROOT) \rtw\c\1libsrc

srcpaths=getSourcePaths(myModelBuildInfo, true);
srcpaths{:}

ans =

\\myserver\myworkspace\matlab\rtw\c\libsrc

See Also getIncludeFiles, getIncludePaths, getSourceFiles
“Programming a Post Code Generation Command”

2-49

packNGo

Purpose Package model code in zip file for relocation

Syntax packNGo (buildinfo, propVals...)

propVals is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

propVals (optional)
A cell array of property-value pairs that specify packaging details.

To... Specify Property... With Value...

Package all model code files in a zip 'packType' ‘flat' (default)

file as a single, flat directory

Package model code files hierarchically | 'packType' 'hierarchical 'Paths

in a primary zip file that contains for files in the

three secondary zip files: secondary zip files

e mlrFiles.zip — files in your are relative to the root
matlabroot directory tree directory of the primary

zip file.

® sDirFiles.zip — files in and under
your build directory

® otherFiles.zip — required files
not in the matlabroot or start
directory trees

Specify a file name for the primary zip | 'fileName' 'string'

file Default: 'model.zip'

If you omit the . zip file
extension, the function
adds it for you.

Description The packNGo function packages the following code files in a compressed
zip file so you can relocate, unpack, and rebuild them in another
development environment:

2-50

packNGo

Examples

See Also

® Source files (for example, .c and .cpp)

e Header files (for example, .h and .hpp)

o MAT-file that contains the model’s build information object (.mat)
You might use this function to relocate files so they can be recompiled for

a specific target environment or rebuilt in a development environment
in which MATLAB is not installed.

By default, the function packages the files as a flat directory structure
in a zip file named model.zip. You can tailor the output by specifying
property name and value pairs as explained above.

After relocating the zip file, use a standard zip utility to unpack the
compressed file.

® Package the code files for model zingbit in the file zingbit.zip as a
flat directory structure.

set_param('zingbit', 'PostCodeGenCommand', 'packNGo(buildInfo);"');

Then, rebuild the model.

® Package the code files for model zingbit in the file portzingbit.zip
and maintain the relative file hierarchy.

cd zingbat_grt_rtw;

load buildInfo.mat

packNGo (buildInfo, {'packType', 'hierarchical’,
'fileName', 'portzingbit'});

“Programming a Post Code Generation Command”
“Relocating Code to Another Development Environment”

2-51

rftwreport

2-52

Purpose

Syntax

Arguments

Description

Example

Document generated code

rtwreport(model, dir)

dir is optional.

model
The model for which generated code is to be documented.

dir (optional)
The directory that contains the generated code. Specify this
argument only if the build directory is not in the current directory
or in the directory that stores the model. The directory you specify
must be a standard build directory and its parent directory must
include the model’s project directory (slprj) .

The rtwreport function generates a report that documents the code
generated by Real-Time Workshop for a specified model. If necessary,
the function loads the model and generates code before generating the
report, which includes:

® Snapshots of block diagrams of the model and its subsystems

¢ Block execution order

e Summary of the generated code

e Full listings of the generated code that resides in the build directory
By default, Real-Time Workshop names the generated report
codegen.html and places the file in the current directory. If you specify
an optional directory, Real-Time Workshop places the file codegen.html
in the parent directory of the specified directory. If the specified

directory is not found, an error results and Real-Time Workshop does
not attempt to generate code for the model.

Generate a report for mymodel.

rtwreport(mymodel) ;

rtwreport
|

See Also “Documenting a Code Generation Project”

2-53

rsimgetrtp

2-54

Purpose

Syntax

Arguments

Returns

Description

Model’s global parameter structure

rsimgetrtp(model, option)

option is optional.

model
The model for which you are running the rapid simulations.

option (optional)
The parameter-value pair 'AddTunableParamInfo' 'value',
where value can be 'on' or 'off'. If you set the parameter
to 'on', Real-Time Workshop extracts tunable parameter
information from the specified model and returns it to
param_struct.

A structure that contains the specified model’s parameter structure.

The rsimgetrtp function forces an update diagram action for the
specified model and returns a structure that contains the following
fields:

rsimgetrip

Field

modelChecksum

parameters

Description

A four-element vector that encodes the
structure of the model. Real-Time Workshop
uses the checksum to check whether the
structure of the model has changed since
the RSim executable was generated. If you
delete or add a block, and then generate a
new model P vector, the new checksum no
longer matches the original checksum. The
RSim executable detects this incompatibility
in parameter vectors and exits to avoid
returning incorrect simulation results. If
the model structure changes, you must
regenerate the code for the model.

A structure that contains the model’s global
parameters.

The parameters substructure includes the following fields:

Field
dataTypeName

dataTypelID

complex
dtTransIdx

values

Description

The name of the parameter’s data type, for
example, double

An internal data type identifier that
Real-Time Workshop uses

The value 0 if real and 1 if complex
Internal use only

A vector of parameter values

2-55

rsimgetrtp

If you specify 'AddTunableParamInfo', 'on', Real-Time Workshop
creates and then deletes model . rtw from your current working directory
and includes a map substructure that has the following fields:

Field Description

Identifier Parameter name

Valuelndicies A vector of indices to the parameter values

Dimensions A vector indicating the parameter
dimensions

To use the AddTunableParamInfo option, you must enable inline
parameters.

Examples Returns the parameter structure for model rtwdemo_rsimtf to
param_struct.

rtwdemo_rsimtf
param_struct = rsimgetrtp('rtwdemo_rsimtf')

param_struct
modelChecksum: [1.7165e+009 3.0726e+009 2.6061e+009

2.3064e+009]
parameters: [1x1 struct]

See Also “Creating a MAT-File That Includes a Model’s Parameter Structure”

2-56

updateFilePathsAndExtensions

Purpose Update files in model’s build information with missing paths and file
extensions
Syntax updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.

Arguments buildinfo
Build information returned by RTW.Buildinfo.

extensions (optional)
A cell array of character arrays that specifies the extensions
(file types) of files for which to search and include in the update
processing. By default, the function searches for files with a
.c extension. The function checks files and updates paths and
extensions based on the order in which you list the extensions in
the cell array. For example, if you specify {'.c' '.cpp'} and
a directory contains myfile.c and myfile.cpp, an instance of
myfile would be updated to myfile.c.

Description Using paths that already exist in a model’s build information, the
updateFilePathsAndExtensions function checks whether any file
references in the build information need to be updated with a path or
file extension. This function can be particularly useful for

¢ Maintaining build information for a toolchain that requires the use of
file extensions

¢ Updating multiple customized instances of build information for a
given model

2-57

updateFilePathsAndExtensions

Examples Create the directory path etcproj/etc in your working directory, add
files etc.c, test1.c, and test2.c to the directory etc. This example
assumes the working directory is w: \work\BuildInfo. From the
working directory, update build information myModelBuildInfo with
any missing paths or file extensions.

myModelBuildInfo = RTW.BuildInfo;

addSourcePaths(myModelBuildInfo, fullfile(pwd,...
‘etcproj', '/etc'), 'test');

addSourceFiles(myModelBuildInfo, {'etc' 'testl'...

"test2'}, '', 'test');
before=getSourceFiles(myModelBuildInfo, true, true);
before
before =

"\etc' "\test1' "\test2'

updateFilePathsAndExtensions(myModelBuildInfo);
after=getSourceFiles (myModelBuildInfo, true, true);
after{:}

ans =

w:\work\BuildInfo\etcproj\etc\etc.c

ans =

w:\work\BuildInfo\etcproj\etc\testl.c

ans =

w:\work\BuildInfo\etcproj\etc\test2.c

2-58

updateFilePathsAndExtensions

See Also addIncludeFiles, addIncludePaths, addSourceFiles,
addSourcePaths, updateFileSeparator
“Programming a Post Code Generation Command”

2-59

updateFileSeparator

Purpose
Syntax

Arguments

Description

Examples

See Also

2-60

Change file separator used in model’s build information
updateFileSeparator(buildinfo, separator)

buildinfo
Build information returned by RTW.Buildinfo.

separator
A character array that specifies the file separator \ (Windows) or /
(UNIX) to be applied to all file path specifications.

The updateFileSeparator function changes all instances of the current
file separator (/ or \) in a model’s build information to the specified
file separator.

The default value for the file separator matches the value returned by
the MATLAB command filesep. For makefile based builds, you can
override the default by defining a separator with the MAKEFILE _FILESEP
macro in the template makefile (see “Cross-Compiling Code Generated
on Windows”. If the GenerateMakefile parameter is set, Real-Time
Workshop overrides the default separator and updates the model’s build
information after evaluating the PostCodeGenCommand configuration
parameter.

Update object myModelBuildInfo to apply the Windows file separator.

myModelBuildInfo = RTW.BuildInfo;
updateFileSeparator(myModelBuildInfo, '\');

addIncludeFiles, addIncludePaths, addSourceFiles,
addSourcePaths, updateFilePathsAndExtensions

“Programming a Post Code Generation Command”, “Cross-Compiling
Code Generated on Windows”

Simulink Block Support

The tables in this chapter summarize Real-Time Workshop and Real-Time
Workshop Embedded Coder support for Simulink blocks. A table appears
for each library. For each block, the second column indicates any support
notes (SNs), which give information you will need when using the block for
code generation.

All support notes appear at the end of this chapter in Support Notes on page
3-18. For more detail, enter the command showblockdatatypetable at the
MATLAB command prompt or consult the block reference pages.

3 Simulink Block Support

3-2

Additional Math and Discrete: Additional Discrete

Block Support Notes
Fixed-Point State-Space SN1
Transfer Fen Direct Form 11 SN1, SN2
Transfer Fen Direct Form II Time Varying SN1, SN2
Unit Delay Enabled SN1, SN2
Unit Delay Enabled External IC SN1, SN2
Unit Delay Enabled Resettable SN1, SN2
Unit Delay Enabled Resettable External IC SN1, SN2
Unit Delay External IC SN1, SN2
Unit Delay Resettable SN1, SN2
Unit Delay Resettable External IC SN1, SN2
Unit Delay With Preview Enabled SN1, SN2
Unit Delay With Preview Enabled Resettable SN1, SN2
Unit Delay With Preview Enabled Resettable SN1, SN2
External RV

Unit Delay With Preview Resettable SN1, SN2
Unit Delay With Preview Resettable External RV SN1, SN2

Additional Math and Discrete: Increment/Decrement

Block Support Notes
Decrement Real World SN1

Decrement Stored Integer SN1

Decrement Time To Zero —

Decrement To Zero SN1

Increment Real World SN1

Increment Stored Integer SN1

3-3

3 Simulink Block Support

Continuous

Block Support Notes
Derivative SN3, SN4
Integrator SN3, SN4
State-Space SN3, SN4
Transfer Fen SN3, SN4
Transport Delay SN3, SN4
Variable Time Delay SN3, SN4
Variable Transport Delay SN3, SN4
Zero-Pole SN3, SN4

3-4

Discontinuities

Block Support Notes
Backlash SN2
Coulomb and Viscous Friction SN1
Dead Zone —

Dead Zone Dynamic SN1

Hit Crossing SN4
Quantizer —

Rate Limiter SN5

Rate Limiter Dynamic SN1, SN5
Relay —
Saturation —
Saturation Dynamic SN1
Wrap To Zero SN1

3-5

3 Simulink Block Support

3-6

Discrete
Block Support Notes
Difference SN1
Discrete Derivative SN2, SN6
Discrete Filter SN2
Discrete State-Space SN2
Discrete Transfer Fen SN2
Discrete Zero-Pole SN2
Discrete-Time Integrator SN2, SN6
First-Order Hold SN4
Integer Delay SN2
Memory —
Tapped Delay SN2
Transfer Fen First Order SN1
Transfer Fen Lead or Lag SN1
Transfer Fen Real Zero SN1
Unit Delay SN2

Weighted Moving Average

Zero-Order Hold

Logic and Bit Operations

Block

Support Notes

Bit Clear

Bit Set

Bitwise Operator

Combinatorial Logic

Compare to Constant

Compare to Zero

Detect Change SN2
Detect Decrease SN2
Detect Fall Negative SN2
Detect Fall Nonpositive SN2
Detect Increase SN2
Detect Rise Nonnegative SN2
Detect Rise Positive SN2

Extract Bits

Interval Test

Interval Test Dynamic

Logical Operator

Relational Operator

Shift Arithmetic

3-7

3 Simulink Block Support

Lookup Tables

Block Support Notes
Cosine SN1
Direct Lookup Table (n-D) SN2

Interpolation Using Prelookup —

Lookup Table —

Lookup Table (2-D) —

Lookup Table (n-D) —

Lookup Table Dynamic —

Prelookup —

Sine SN1

3-8

Math Operations

Block

Support Notes

Abs

Add

Algebraic Constraint

Not supported

Assignment

SN2

Bias

Complex to Magnitude-Angle

Complex to Real-Imag

Divide

Dot Product

Gain

Magnitude-Angle to Complex

Math Function (10”u)

Math Function (conj)

Math Function (exp)

Math Function (hermitian)

Math Function (hypot)

Math Function (log)

Math Function (log10)

Math Function (magnitude”2)

Math Function (mod)

Math Function (pow)

Math Function (reciprocal)

Math Function (rem)

Math Function (square)

Math Function (sqrt)

3-9

3 Simulink Block Support

Math Operations (Continued)

Block Support Notes

Math Function (transpose) =

Matrix Concatenate SN2

MinMax —

MinMax Running Resettable —

Permute Dimensions SN2

Polynomial —

Product SN2

Product of Elements SN2

Real-Imag to Complex —

Reshape —

Rounding Function —

Sign —

Sine Wave Function SN6, SN9

Slider Gain —

Squeeze SN2

Subtract —

Sum —

Sum of Elements =

Trigonometric Function SN7

Unary Minus —

Vector Concatenate SN2

Weighted Sample Time Math —

3-10

Model Verification

Block

Support Notes

Assertion

Check Discrete Gradient

Check Dynamic Gap

Check Dynamic Lower Bound

Check Dynamic Range

Check Dynamic Upper Bound

Check Input Resolution

Check Static Gap

Check Static Lower Bound

Check Static Range

Check Static Upper Bound

3-11

3 Simulink Block Support

3-12

Ports & Subsystems

Block

Support Notes

Atomic Subsystem

CodeReuse Subsystem

Configurable Subsystem

Enabled Subsystem

Enabled and Triggered Subsystem

For Iterator Subsystem

Function-Call Generator

Function-Call Subsystem

If

If Action Subsystem

Model

Subsystem

Switch Case

Switch Case Action Subsystem

Triggered Subsystem

While Iterator Subsystem

Signal Attributes

Block

Support Notes

Bus to Vector

Data Type Conversion

Data Type Conversion Inherited

Data Type Duplicate

Data Type Propagation

Data Type Scaling Strip

IC SN4
Probe —
Rate Transition SN2, SN5

Signal Conversion

Signal Specification

Weighted Sample Time

Width

3-13

3 Simulink Block Support

3-14

Signal Routing

Block

Support Notes

Bus Assignment

Bus Creator

Bus Selector

Data Store Memory

Data Store Read

Data Store Write

Demux

Environment Controller

From

Goto

Goto Tag Visibility

Index Vector

Manual Switch SN4
Merge SN13
Multiport Switch SN2
Mux —
Selector —
Switch SN2

Sinks

Block Support Notes
Display SN8

Floating Scope SN8

Outport (Outl) —

Scope SN8

Stop Simulation SN14
Terminator —

To File SN4

To Workspace SN8

XY Graph SN8

3-15

3 Simulink Block Support

3-16

Sources
Block Support Notes
Band-Limited White Noise SN5
Chirp Signal SN4
Clock SN4
Constant —
Counter Free-Running SN4
Counter Limited SN1, SN4
Digital Clock SN4
From File SN8
From Workspace SN8
Ground —
Inport (Inl) —
Pulse Generator SN5, SN9
Ramp SN4
Random Number —
Repeating Sequence SN10
Repeating Sequence Interpolated SN1, SN5
Repeating Sequence Stair SN1
Signal Builder SN4
Signal Generator SN4
Sine Wave SN6, SN9
Step SN4

Uniform Random Number

User-Defined

Block

Support Notes

Embedded MATLAB Function

Fen

Level-2 M-File S-Function

Not supported

MATLAB Fecn

SN11

S-Function

SN12

S-Function Builder

3-17

3 Simulink Block Support

3-18

Support Notes

Symbol

Note

Real-Time Workshop supports the block and requires no special
notes.

SN1

Real-Time Workshop does not explicitly group primitive blocks
that constitute a nonatomic masked subsystem block in the
generated code. This flexibility allows for more optimal code
generation. In certain cases, you can achieve grouping by
configuring the masked subsystem block to execute as an atomic
unit by selecting the Treat as atomic unit option.

SN2

Generated code relies on memcpy or memset (string.h) under
certain conditions.

SN3

Consider using the Simulink Model Discretizer to map
continuous blocks into discrete equivalents that support
code generation. To start the Model Discretizer, click
Tools > Control Design.

SN4

Not recommended for production code.

SN5

Cannot use inside a triggered subsystem hierarchy.

SN6

Depends on absolute time when used inside a triggered
subsystem hierarchy.

SN7

The three functions — asinh, acosh, and atanh — are not
supported by all compilers. If you use a compiler that does not
support these functions, Real-Time Workshop issues a warning
message for the block and the generated code fails to link.

SN8

Ignored for code generation.

SN9

Does not refer to absolute time when configured for
sample-based operation. Depends on absolute time when in
time-based operation.

SN10

Consider using the Repeating Sequence Stair or Repeating
Sequence Interpolated block instead.

SN11

Consider using the Embedded MATLAB block instead.

Support Notes (Continued)

Symbol

Note

SN12

S-functions that call into MATLAB are not supported for code
generation.

SN13

When more than one signal connected to a Merge block has a
non-Auto storage class, all non-Auto signals connected to that
block must be identically labeled and have the same storage
class. When Merge blocks connect directly to one another, these
rules apply to all signals connected to any of the Merge blocks
in the group.

SN14

When a model includes a Stop Simulation block, generated code
stops executing when the stop condition is true.

3-19

3 Simulink Block Support

3-20

Blocks — By Category

Custom Code (p. 4-2)

Interrupt Templates (p. 4-3)

S-Function Target (p. 4-4)
VxWorks (p. 4-5)

Insert custom code into generated
model files and subsystem functions

Create blocks that provide interrupt
support for real-time operating
system (RTOS)

Generate code for S-function

Support VxWorks applications

4 piocks — By Category

Custom Code

Model Header
Model Source

System Derivatives

System Disable
System Enable

System Initialize

System Outputs
System Start

System Terminate

System Update

Specify custom header code
Specify custom source code

Specify custom system derivative
code

Specify custom system disable code
Specify custom system enable code

Specify custom system initialization
code

Specify custom system outputs code
Specify custom system startup code

Specify custom system termination
code

Specify custom system update code

Interrupt Templates

Interrupt Templates

Async Interrupt

Task Sync

Generate Versa Module Eurocard
(VME) interrupt service routines
(ISRs) that are to execute
downstream subsystems or Task
Sync blocks

Spawn VxWorks task to run code of
downstream function-call subsystem
or Stateflow chart

4-3

4 piocks — By Category

S-Function Target

RTW S-Function Represent model or subsystem as
generated S-function code

4-4

VxWorks

VxWorks

Async Interrupt

Protected RT

Task Sync

Unprotected RT

Generate Versa Module Eurocard
(VME) interrupt service routines
(ISRs) that are to execute
downstream subsystems or Task
Sync blocks

Handle transfer of data between
blocks operating at different rates
and ensure data integrity

Spawn VxWorks task to run code of
downstream function-call subsystem
or Stateflow chart

Handle transfer of data between
blocks operating at different rates
and ensure determinism

4 piocks — By Category

Blocks — Alphabetical List

Async Interrupt

5-2

Purpose

Library

Description

SmIR: RGN

Parameters

Generate Versa Module Eurocard (VME) interrupt service routines
(ISRs) that are to execute downstream subsystems or Task Sync blocks

Interrupt Templates, VxWorks

For each specified VxWorks VME interrupt level, the Async Interrupt

block generates an interrupt service routine (ISR) that calls one of the
following:

¢ A function call subsystem
e A Task Sync block

® A Stateflow chart configured for a function call input event

You can use the block for simulation and code generation.

VME interrupt number(s)

An array of VME interrupt numbers for the interrupts to be
installed. The valid range is 1..7.

The width of the Async Interrupt block output signal corresponds
to the number of VME interrupt numbers specified.

Note A model can contain more than one Async Interrupt block.
However, if you use more than one Async Interrupt block, do not
duplicate the VME interrupt numbers specified in each block.

VME interrupt vector offset(s)
An array of unique interrupt vector offset numbers corresponding
to the VME interrupt numbers entered in the VME interrupt
number(s) field. Real-Time Workshop passes the offsets to the
VxWorks call intConnect (INUM_TO IVEC(offset),...).

Async Interrupt

Simulink task priority(s)
The Simulink priority of downstream blocks. Each output
of the Async Interrupt block drives a downstream block (for
example, a function-call subsystem). Specify an array of priorities
corresponding to the VME interrupt numbers you specify for
VME interrupt number(s).

The Simulink task priority values are required to generate
the proper rate transition code (see “Rate Transitions and
Asynchronous Blocks” in the Real-Time Workshop documentation).
Simulink task priority values are also required to ensure absolute
time integrity when the asynchronous task needs to obtain real
time from its base rate or its caller. The assigned priorities
typically are higher than the priorities assigned to periodic tasks.

Note Simulink does not simulate asynchronous task behavior.
The task priority of an asynchronous task is for code generation
purposes only and is not honored during simulation.

Preemption flag(s); preemptable-1; non-preemptable-0
The value 1 or 0. Set this option to 1 if an output signal of the
Async Interrupt block drives a Task Sync block.

Higher priority interrupts can preempt lower priority interrupts
in VxWorks. To lock out interrupts during the execution of an
ISR, set the preemption flag to 0. This causes generation of
intLock() and intUnlock() calls at the beginning and end of
the ISR code. Use interrupt locking carefully, as it increases

the system’s interrupt response time for all interrupts at the
intLockLevelSet () level and below. Specify an array of flags
corresponding to the VME interrupt numbers entered in the VME
interrupt number(s) field.

Async Interrupt

Note The number of elements in the arrays specifying VME
interrupt vector offset(s) and Simulink task priority must
match the number of elements in the VME interrupt number(s)
array.

Manage own timer

If checked, the ISR generated by the Async Interrupt block
manages its own timer by reading absolute time from the
hardware timer. Specify the size of the hardware timer with the
Timer size option.

Timer resolution (seconds)

The resolution of the ISRs timer. ISRs generated by the Async
Interrupt block maintain their own absolute time counters. By
default, these timers obtain their values from the VxWorks
kernel by using the tickGet call. The Timer resolution

field determines the resolution of these counters. The default
resolution is 1/60 second. The tickGet resolution for your board
support package (BSP) might be different. You should determine
the tickGet resolution for your BSP and enter it in the Timer
resolution field.

If you are targeting VxWorks, you can obtain better timer
resolution by replacing the tickGet call and accessing a hardware
timer by using your BSP instead. If you are targeting an RTOS
other than VxWorks, you should replace the tickGet call with an
equivalent call to the target RTOS, or generate code to read the
appropriate timer register on the target hardware. See “Using
Timers in Asynchronous Tasks” and “Async Interrupt Block
Implementation” in the Real-Time Workshop documentation for
more information.

Timer size

The number of bits to be used to store the clock tick for a hardware
timer. The ISR generated by the Async Interrupt block uses the
timer size when you select Manage own timer. The size can

Async Interrupt

be 32bits (the default), 16bits, 8bits, or auto. If you select
auto, Real-Time Workshop determines the timer size based on the
settings of Application lifespan (days) and Timer resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
is too large for Real-Time Workshop to handle as a 32-bit integer
of the specified resolution, Real-Time Workshop uses a second
32-bit integer to address overflows.

For more information, see “Application Lifespan”. See also “Using
Timers in Asynchronous Tasks”.

Enable simulation input

If checked, Simulink adds an input port to the Async Interrupt
block. This port is for use in simulation only. Connect one or more
simulated interrupt sources to the simulation input.

Note Before generating code, consider removing blocks that drive
the simulation input to ensure that those blocks do not contribute
to the generated code. Alternatively, you can use the Environment
Controller block, as explained in “Dual-Model Approach: Code
Generation”. However, if you use the Environment Controller
block, be aware that the sample times of driving blocks contribute
to the sample times supported in the generated code.

Async Interrupt

Inputs and Input
Outputs A simulated interrupt source.
Output

Control signal for a
¢ Function-call subsystem
¢ Task Sync block

¢ Stateflow chart configured for a function call input event

Assumptions ¢ The block supports VME interrupts 1 through 7.

a_nc! . ¢ The block requires a VxWorks Board Support Package (BSP) that
Limitations supports the following VxWorks system calls:

sysIntEnable
sysIntDisable
intConnect
intLock
intUnlock
tickGet

Performance Execution of large subsystems at interrupt level can have a significant

Considerations impact on interrupt response time for interrupts of equal and lower
priority in the system. As a general rule, it is best to keep ISRs as short
as possible. Connect only function-call subsystems that contain a small
number of blocks to an Async Interrupt block.

A better solution for large subsystems is to use the Task Sync block to
synchronize the execution of the function-call subsystem to a VxWorks
task. Place the Task Sync block between the Async Interrupt block
and the function-call subsystem. The Async Interrupt block then uses
the Task Sync block as the ISR. The ISR releases a synchronization
semaphore (performs a semGive) to the task, and returns immediately
from interrupt level. VxWorks then schedules and runs the task. See
the description of the Task Sync block for more information.

Async Interrupt

See Also

Task Sync
“Asynchronous Support” in the Real-Time Workshop documentation

5-7

Model Header

Purpose Specify custom header code

Librclry Custom Code

Description The Model Header block adds user-specified custom code to the model.h
file that Real-Time Workshop generates for the model that contains
the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Parameters Top of Model Header
Code to be added at the top of the model’s generated header file.

Bottom of Model Header
Code to be added at the top of the model’s generated header file.

Example See “Example: Using a Custom Code Block”.

See Also Model Source, System Derivatives, System Disable,
System Enable, System Initialize, System Outputs,
System Start, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-8

Model Source

Purpose
Library

Description

Parameters

Example

See Also

Specify custom source code
Custom Code
The Model Source block adds user-specified custom code to the model.c

or model.cpp file that Real-Time Workshop generates for the model
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

Top of Model Source
Code to be added at the top of the model’s generated source file.

Bottom of Model Source
Code to be added at the top of the model’s generated source file.

See “Example: Using a Custom Code Block”.

Model Header, System Derivatives, System Disable,

System Enable, System Initialize, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-9

Protected RT

Purpose Handle transfer of data between blocks operating at different rates
and ensure data integrity

Libra ry VxWorks

Description The Protected RT block is a Rate Transition block that is preconfigured
to ensure data integrity during data transfers. For more information,
see Rate Transition in the Simulink Reference.

5-10

RTW S-Function
|

Purpose Represent model or subsystem as generated S-function code
Librclry S-Function Target
Description An instance of the RTW S-Function block represents code Real-Time

Workshop generates from its S-function target for a model or subsystem.
For example, you extract a subsystem from a model and build an RTW
S-Function block from it, using the S-function target. This mechanism
can be useful for

® Converting models and subsystems to application components

® Reusing models and subsystems

¢ Optimizing simulation — often, an S-function simulates more
efficiently than the original model

® Protecting intellectual property — you need only provide the binary
MEX-file object to users

For details on how to create an RTW S-Function block from a subsystem,
see “Creating an S-Function Block from a Subsystem” in the Real-Time
Workshop documentation.

Requirements The S-Function block must perform identically to the model or

subsystem from which it was generated.

¢ Before creating the block, you must explicitly specify all Inport block
signal attributes, such as signal widths or sample times. The sole
exception to this rule concerns sample times, as described in “Sample
Time Propagation in Generated S-Functions” in the Real-Time
Workshop documentation.

® You must set the solver parameters of the RTW S-function block
to be the same as those of the original model or subsystem. This
ensures that the generated S-function code will operate identically to
the original subsystem (see Choice of Solver Type in the Real-Time
Workshop documentation for an exception to this rule).

5-11

RTW S-Function

5-12

Parameters

See Also

Generated S-function name (model_sf)
The name of the generated S-function. Real-Time Workshop
derives the name by appending _sf to the name of the model or
subsystem from which the block is generated.

Show module list
If checked, displays modules generated for the S-function.

“Creating an S-Function Block from a Subsystem” in the Real-Time
Workshop documentation

System Derivatives

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system derivative code
Custom Code

The System Derivatives block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDerivatives
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Derivatives Function Declaration Code
Code to be added to the declaration section of the generated
SystemDerivatives function.

System Derivatives Function Execution Code
Code to be added to the execution section of the generated
SystemDerivatives function.

System Derivatives Function Exit Code
Code to be added to the exit section of the generated
SystemDerivatives function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Disable,

System Enable, System Initialize, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-13

System Disable

Purpose
Library

Description

Parameters

Example

See Also

5-14

Specify custom system disable code
Custom Code

The System Disable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemDisable
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Disable Function Declaration Code
Code to be added to the declaration section of the generated
SystemDisable function.

System Disable Function Execution Code
Code to be added to the execution section of the generated
SystemDisable function.

System Disable Function Exit Code
Code to be added to the exit section of the generated
SystemDisable function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Enable, System Initialize, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

System Enable

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system enable code
Custom Code

The System Enable block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemEnable
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Enable Function Declaration Code
Code to be added to the declaration section of the generated
SystemEnable function.

System Enable Function Execution Code
Code to be added to the execution section of the generated
SystemEnable function.

System Enable Function Exit Code
Code to be added to the exit section of the generated SystemEnable
function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Initialize, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-15

System Initialize

Purpose
Library

Description

Parameters

Example

See Also

5-16

Specify custom system initialization code
Custom Code

The System Initialize block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemInitialize
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Initialize Function Declaration Code
Code to be added to the declaration section of the generated
SystemInitialize function.

System Initialize Function Execution Code
Code to be added to the execution section of the generated
SystemInitialize function.

System Initialize Function Exit Code
Code to be added to the exit section of the generated
SystemInitialize function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Outputs,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

System Outputs

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system outputs code
Custom Code

The System Outputs block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemOutputs
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Outputs Function Declaration Code
Code to be added to the declaration section of the generated
SystemOutputs function.

System OQutputs Function Execution Code
Code to be added to the execution section of the generated
SystemOutputs function.

System Outputs Function Exit Code
Code to be added to the exit section of the generated
SystemOutputs function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Initialize,

System Start, System Terminate, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-17

System Start

Purpose
Library

Description

Parameters

Example

See Also

5-18

Specify custom system startup code
Custom Code

The System Start block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemStart
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Start Function Declaration Code
Code to be added to the declaration section of the generated
SystemStart function.

System Start Function Execution Code
Code to be added to the execution section of the generated
SystemStart function.

System Start Function Exit Code
Code to be added to the exit section of the generated SystemStart
function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Initialize,

System Outputs, System Terminate, System Update
“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

System Terminate

Purpose
Library

Description

Parameters

Example

See Also

Specify custom system termination code
Custom Code

The System Terminate block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemTerminate
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Terminate Function Declaration Code
Code to be added to the declaration section of the generated
SystemTerminate function.

System Terminate Function Execution Code
Code to be added to the execution section of the generated
SystemTerminate function.

System Terminate Function Exit Code
Code to be added to the exit section of the generated
SystemTerminate function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Initialize,

System Outputs, System Start, System Update

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

5-19

System Update

Purpose
Library

Description

Parameters

Example

See Also

5-20

Specify custom system update code
Custom Code

The System Update block adds user-specified custom code to the
declaration, execution, and exit code sections of the SystemUpdate
function that Real-Time Workshop generates for the model or subsystem
that contains the block.

Note If you include this block in a submodel (model referenced by a
Model block), Real-Time Workshop ignores the block for simulation
target builds, but includes any specified custom code in the build
process for other targets.

System Update Function Declaration Code
Code to be added to the declaration section of the generated
SystemUpdate function.

System Update Function Execution Code
Code to be added to the execution section of the generated
SystemUpdate function.

System Update Function Exit Code
Code to be added to the exit section of the generated SystemUpdate
function.

See “Example: Using a Custom Code Block”.

Model Header, Model Source, System Derivatives,

System Disable, System Enable, System Initialize,

System Outputs, System Start, System Terminate

“Inserting Custom Code Into Generated Code” in the Real-Time
Workshop documentation

Task Sync
|

Pu rpose Spawn VxWorks task to run code of downstream function-call subsystem
or Stateflow chart

Librclry Interrupt Templates, VxWorks

Description The Task Sync block spawns a VxWorks task that calls a function-call

subsystem or Stateflow chart. Typically, you place the Task Sync block
between an Async Interrupt block and a function-call subsystem block
or Stateflow chart. Alternatively, you might connect the Task Sync block
to the output port of a Stateflow diagram that has an event, Output to
Simulink, configured as a function call.

The Task Sync block performs the following functions:

® Uses the VxWorks system call taskSpawn to spawn an independent
task. When the task is activated, it calls the downstream function-call
subsystem code or Stateflow chart. The block calls taskDelete to
delete the task during model termination.

® Creates a semaphore to synchronize the connected subsystem with
execution of the block.

® Wraps the spawned task in an infinite for loop. In the loop, the
spawned task listens for the semaphore, using semTake. The first call
to semTake specifies NO_WAIT. This allows the task to determine
whether a second semGive has occurred prior to the completion of
the function-call subsystem or chart. This would indicate that the
interrupt rate is too fast or the task priority is too low.

¢ Generates synchronization code (for example, semGive ()). This code
allows the spawned task to run. The task in turn calls the connected
function-call subsystem code. The synchronization code can run at
interrupt level. This is accomplished through the connection between
the Async Interrupt and Task Sync blocks, which triggers execution
of the Task Sync block within an ISR.

® Supplies absolute time if blocks in the downstream algorithmic code
require it. The time is supplied either by the timer maintained by

5-21

Task Sync

Parameters

5-22

the Async Interrupt block, or by an independent timer maintained by
the task associated with the Task Sync block.

When you design your application, consider when timer and signal input
values should be taken for the downstream function-call subsystem that
is connected to the Task Sync block. By default, the time and input
data are read when VxWorks activates the task. For this case, the data
(input and time) are synchronized to the task itself. If you select the
Synchronize the data transfer of this task with the caller task
option and the Task Sync block is driven by an Async Interrupt block,
the time and input data are read when the interrupt occurs (that is,
within the ISR). For this case, data is synchronized with the caller of
the Task Sync block.

Task name (10 characters or less)
The first argument passed to the VxWorks taskSpawn system call.
VxWorks uses this name as the task function name. This name
also serves as a debugging aid; routines use the task name to
identify the task from which they are called.

Simulink task priority (0-255)
The VxWorks task priority to be assigned to the function-call
subsystem task when spawned. VxWorks priorities range from 0
to 255, with 0 representing the highest priority.

Note Simulink does not simulate asynchronous task behavior.
The task priority of an asynchronous task is for code generation
purposes only and is not honored during simulation.

Stack size (bytes)
Maximum size to which the task’s stack can grow. The stack size
is allocated when VxWorks spawns the task. Choose a stack size
based on the number of local variables in the task. You should
determine the size by examining the generated code for the task
(and all functions that are called from the generated code).

Task Sync

Synchronize the data transfer of this task with the caller task
If not checked (the default),

® The block maintains a timer that provides absolute time values
required by the computations of downstream blocks. The timer
is independent of the timer maintained by the Async Interrupt
block that calls the Task Sync block.

¢ A Timer resolution option appears.

¢ The Timer size option specifies the word size of the time
counter.

If checked,

® The block does not maintain an independent timer, and does
not display the Timer resolution field.

® Downstream blocks that require timers use the timer

maintained by the Async Interrupt block that calls the Task
Sync block (see “Using Timers in Asynchronous Tasks” in the
Real-Time Workshop documentation). The timer value is read
at the time the asynchronous interrupt is serviced, and data
transfers to blocks called by the Task Sync block and execute
within the task associated with the Async Interrupt block.
Therefore, data transfers are synchronized with the caller.

Timer resolution (seconds)
The resolution of the block’s timer in seconds. This option appears
only if Synchronize the data transfer of this task with the
caller task is not checked. By default, the block gets the timer
value by calling the VxWorks tickGet function. The default
resolution is 1/60 second. The tickGet resolution for your BSP
might be different. You should determine the tickGet resolution
for your BSP and enter it in the Timer resolution field.

Timer size
The number of bits to be used to store the clock tick for a hardware
timer. The size can be 32bits (the default), 16bits, 8bits, or
auto. If you select auto, Real-Time Workshop determines the

5-23

Task Sync

timer size based on the settings of Application lifespan (days)
and Timer resolution.

By default, timer values are stored as 32-bit integers. However,
when Timer size is auto, you can indirectly control the word
size of the counters by setting the Application lifespan (days)
option. If you set Application lifespan (days) to a value that
is too large for Real-Time Workshop to handle as a 32-bit integer
of the specified resolution, Real-Time Workshop uses a second
32-bit integer to address overflows.

For more information, see “Application Lifespan”. See also “Using
Timers in Asynchronous Tasks”.

Inputs and Input
Outputs A call from an Async Interrupt block.
Output

A call to a function-call subsystem.

See Also Async Interrupt
“Asynchronous Support” in the Real-Time Workshop documentation

5-24

Unprotected RT
|

Purpose Handle transfer of data between blocks operating at different rates
and ensure determinism

Libra ry VxWorks

Description The Unprotected RT block is a Rate Transition block that is
preconfigured to ensure deterministic data transfers. For more
information, see Rate Transition in the Simulink Reference.

5-25

Configuration Parameter
Reference

6 Configuration Parameter Reference

The following table lists Real-Time Workshop® and Real-Time Workshop
Embedded Coder parameters that you can use to tune model and target
configurations. The table provides brief descriptions, valid values (bold type
highlights defaults), and a mapping to Configuration Parameter dialog box
equivalents. For descriptions of the panes and options in that dialog box, see
“Adjusting Simulation Configuration Parameters for Code Generation” and
“Configuring Real-Time Workshop Code Generation Parameters”.

Use the get _param and set_param commands to retrieve and set the values
of the parameters on the MATLAB® command line or programmatically in
scripts. The Configuration Wizard in Real-Time Workshop Embedded Coder
also provides buttons and scripts for customizing code generation.

For information about Simulink® parameters, see “Model Configuration
Dialog” in the Simulink documentation. For information on using get_param
and set_param to tune the parameters for various model configurations, see
“Parameter Tuning by Using MATLAB Commands”. See “Using Configuration
Wizard Blocks” in the Real-Time Workshop Embedded Coder documentation
for information on using Configuration Wizard features.

Note Parameters that are specific to the ERT target or targets based on
the ERT target, Stateflow®, or Fixed-Point Toolbox support are marked
with (ERT), (Stateflow), and (Fixed-Point), respectively. To set the values
of parameters marked with (ERT), you must specify an ERT or ERT-based
target for your configuration set. Also, note that the default setting for a
parameter might vary for different targets. Parameters marked with (ERT)
are listed with ERT target defaults.

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

BufferReuse
off, on

Optimization > Reuse block
outputs

Reuse local (function)
variables for block outputs
wherever possible.
Selecting this option
trades code traceability
for code efficiency.

CodeGenDirectory

Not available

For MathWorks use only.

CombineOutputUpdateFcns

Real-Time Workshop

Generate a model’s output

(ERT) > Interface > Single and update routines into a
off, on output/update function single-step function.
Comment Not available For MathWorks use only.
ConfigAtBuild Not available For MathWorks use only.
ConfigurationMode Not available For MathWorks use only.
ConfigurationScript Not available For MathWorks use only.

CustomCommentsFcn (ERT)
string

Real-Time Workshop >
Comments > Custom
comments function

Specify the filename of
the M-function or TLC
function that adds the
custom comment.

CustomHeaderCode Real-Time Specify the code to appear
string Workshop > Custom at the top of the generated
Code > Header file model.h header file.
CustomInclude Real-Time Specify a space-separated
string Workshop > Custom list of include directories
Code > Include directories to be added to the include
path when compiling the
generated code.
CustomInitializer Real-Time Specify the code to appear
string Workshop > Custom Code in the generated model

initialize function.

6 Configuration Parameter Reference

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

CustomLibrary Real-Time Specify a space-separated
string Workshop > Custom list of static library files
Code > Initialize function to be linked with the
Libraries generated code.
CustomSource Real-Time Specify a space-separated
string Workshop > Custom list of source files to be
Code > Source files compiled and linked with
the generated code.
CustomSourceCode Real-Time Specify code to appear at
string Workshop > Custom the top of the generated

Code > Source file

model .c source file.

CustomSymbolStrBlkIO (ERT)
string - rtbh_NM

Real-Time Workshop >
Symbols > Local block output
variables

Specify a symbol format
rule for local block output
variables. The rule

can contain valid C
identifier characters and
the following macros:

$M - Mangle

$N - Name of object

$A - Data type acronym

CustomSymbolStrFcn (ERT)
string - $RENSMSF

Real-Time Workshop >
Symbols > Subsystem methods

Specify a symbol format
rule for subsystem
methods. The rule
can contain valid C
identifier characters and
the following macros:
$M - Mangle

$R - Root model name
$N - Name of object
$H - System
hierarchy number

$F - Subsystem method
name

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

CustomSymbolStrField (ERT)
string - NM

Real-Time Workshop >
Symbols > Field name of
global types

Specify a symbol format
rule for field name of
global types. The rule
can contain valid C
identifier characters and
the following macros:

$M - Mangle
$N - Name of object
$H - System

hierarchy number
$A - Data type acronym

CustomSymbolStrGlobalVar
(ERT)
string - $SRENSM

Real-Time Workshop >
Symbols > Global variables

Specify a symbol format
rule for global variables.
The rule can contain valid
C identifier characters
and the following macros:
$M - Mangle

$R - Root model name
$N - Name of object

CustomSymbolStrMacro (ERT)
string - SRENSM

Real-Time Workshop >
Symbols > Constant macros

Specify a symbol format
rule for constant macros.
The rule can contain valid
C identifier characters
and the following macros:
$M - Mangle

$R - Root model name
$N - Name of object

6-5

6 Configuration Parameter Reference

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

CustomSymbolStrTmpVar (ERT)
string - NM

Real-Time Workshop >
Symbols > Local temporary
variables

Specify a symbol format
rule for local temporary
variables. The rule

can contain valid C
identifier characters and
the following macros:
$M - Mangle

$R - Root model name
$N - Name of object

CustomSymbolStrType (ERT)
string - NSRM

Real-Time Workshop >
Symbols > Global types

Specify a symbol format
rule for global types. The
rule can contain valid C
identifier characters and
the following macros:
$M - Mangle

$R - Root model name
$N - Name of object

CustomTerminator
string

Real-Time
Workshop > Custom
Code > Terminate function

Specify code to appear
in the model’s generated
terminate function.

DataBitsets (Stateflow)
off, on

Optimization > Use bit sets
for storing boolean data

Use bit sets for storing
Boolean data.

DataDefinitionFile (ERT)
string

Real-Time Workshop > Data
Placement > Data definition
filename

Specify the name of a
single separate .c or .cpp
file that contains global
data definitions.

DataReferenceFile (ERT)
string

Real-Time Workshop > Data
Placement > Data declaration
filename

Specify the name of a
single separate .c or .cpp
file that contains global
data references.

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

DefineNamingFcn
string

Real-Time
Workshop > Symbols > #define
naming > Custom M-function

Specify a custom
M-function to control

the naming of symbols
with #define statements.
You can set this parameter
only if DefineNamingRule
is set to Custom.

DefineNamingRule (ERT)
None, UpperCase, LowerCase,
Custom

Real-Time Workshop >
Symbols > #define naming

Specify the rule that
changes the spelling of all
#define names.

EfficientFloat2IntCast
off, on

Optimization > Remove

code from floating-point to
integer conversions that wrap
out-of-range values

Remove wrapping code
that handles out-of-range
floating-point to integer
conversion results.

ERTCustomFileBanners

Not available

For MathWorks use only.

ERTCustomFileTemplate
(ERT)

string -

example_file_ process.tlc

Real-Time Workshop
> Templates > File
customization template

Specify a TLC callback
script for customizing the
generated code.

ERTDataHdrFileTemplate
(ERT)

string -
ert_code_template.cgt

Real-Time Workshop >
Templates > Header file (*.h)
template

Specify a template that
organizes the generated
data .h header files.

ERTDataSrcFileTemplate
(ERT)

string -
ert_code_template.cgt

Real-Time Workshop >
Templates > Source file (*.c or
*.cpp) template

Specify a template that
organizes the generated
data .c source files.

ERTHdrFileBannerTemplate
(ERT)

string -
ert_code_template.cgt

Real-Time Workshop >
Templates > Header file (*.h)
template

Specify a template that
organizes the generated
code .h header files.

6 Configuration Parameter Reference

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

ERTSrcFileBannerTemplate
(ERT)

string -
ert_code_template.cgt

Real-Time Workshop >
Templates > Source file (*.c or
*.cpp) template

Specify a template that
organizes the generated
code .c or .cpp source

files.

EnableCustomComments (ERT)
off, on

Real-Time Workshop >
Comments > Custom
comments (MPT objects
only)

Add a comment above a
signal’s or parameter’s
identifier in the generated
file.

EnforceIntegerDowncast
off, on

Optimization > Ignore
integer downcasts in folded
expressions

Remove casts of
intermediate variables
to improve code efficiency.
When you select this
option, expressions
involving 8-bit and
16-bit arithmetic on
microprocessors of a
larger bit size are less
likely to overflow in code
than in simulation.

ERTFirstTimeCompliant (ERT)

off, on

Not available

Set in SelectCallback
for a target to indicate
whether the target
supports the ability to
control inclusion of the
firstTime argument in
the model initialize
function generated for a
Simulink model. Default
is of f for custom and
non-ERT targets and on
for ERT targets.

EvaledLifeSpan

Not available

For MathWorks use only.

6-8

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

ExpressionFolding Optimization > Eliminate Collapse block
off, on superfluous temporary computations into single
variables (Expression expressions wherever
folding) > Interface possible. This improves
code readability and
efficiency.
ExtMode Real-Time Specify the data interface
off, on Workshop > Interface to be generated with the
code.
ExtModeMexArgs Real-Time Workshop > Specify external mode mex

string - mex

Interface > Interface
> External > MEX-file
arguments

arguments.

ExtModeMexFile Not available For MathWorks use only.
ExtModeStaticAlloc Real-Time Workshop Use a static memory buffer
off, on > Interface > Static for external mode instead

memory allocation

of allocating dynamic
memory (calls to malloc).

ExtModeStaticAllocSize
off, on

Real-Time Workshop >
Interface > Static memory
buffer size

Specify the size in bytes of
the external mode static
memory buffer.

ExtModeTesting

Not available

For MathWorks use only.

ExtModeTransport
tepip, serial-win32

Real-Time Workshop >
Interface > Interface >
External > Transport layer

Specify transport protocols
for external mode
communications.

FoldNonRolledExpr

Not available

For MathWorks use only.

6 Configuration Parameter Reference

6-10

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

ForceParamTrailComments
off, on

Real-Time Workshop >
Comments > Verbose
comments for SimulinkGlobal
storage class

Specify that comments be
included in the generated
file. To reduce file size,
the model parameters
data structure is not
commented when there
are more than 1000

parameters.
GenCodeOnly Real-Time Generate source code,
off, on Workshop > Generate but do not execute the

code only makefile to build an

executable.
GenerateASAP2 Real-Time Workshop > Specify the data interface
off, on Interface > Interface to be generated with the

code.
GenerateComments Real-Time Workshop > Include comments in
off, on Comments > Include generated code.

comments

GenerateErtSFunction (ERT)
off, on

Real-Time Workshop >
Interface > Create Simulink
(S-Function) block

Wrap the generated code
inside an S-Function
block. This allows you
to validate the generated
code in Simulink.

GenerateFullHeader Not available For MathWorks use only.
GenerateMakefile Real-Time Workshop > Specify whether
off, on General > Generate makefile | Real-Time Workshop
is to generate a makefile
during the build process
for a model.
GenerateReport Real-Time Workshop > Document the generated
off, on General > Generate HTML C or C++ code in an HTML
report report.

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

GenerateSampleERTMain (ERT)
off, on

Real-Time Workshop >
Templates > Generate an
example main program

Generate an example
main program that
demonstrates how to
deploy the generated code.
The program is written
to the file ert_main.c or
ert_main.cpp.

GenFloatMathFcnCalls
string - ANSI_C

Real-Time Workshop
> Interface > Target
floating-point math

environment

Specify the math library
extension available to
your target. Verify that
your compiler supports the
library you want to use;
otherwise compile-time
errors can occur.

ANSI_C - ISO/IEC
9899:1990 C standard
math library for
floating-point functions
IS0 _C - ISO/IEC
9899:1999 C standard
math library

GNU - GNU gcc math
library, which provides
C99 extensions as defined
by compiler option
-std=gnu99

GlobalDataDefinition(ERT)
Auto, InSourceFile,
InSeparateSourceFile

Real-Time Workshop > Data
Placement > Data definition

Select the .c or .cpp file
where variables of global
scope are defined.

GlobalDataReference (ERT)
Auto, InSourceFile,
InSeparateHeaderFile

Real-Time Workshop > Data
Placement > Data declaration

Select the .h file where
variables of global
scope are declared (for
example, extern real T
globalvar;).

6-11

6 Configuration Parameter Reference

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

GRTInterface (ERT)
off, on

Real-Time Workshop >
Interface > GRT compatible
call interface

Include a code interface
(wrapper) that is
compatible with the
GRT target.

IgnoreCustomStorageClasses

Real-Time Workshop >

Treat custom storage

(ERT) General > Ignore custom classes as 'Auto’.

off, on storage classes

IncAutoGenComments Not available For MathWorks use only.

IncDataTypelInIds Real-Time Workshop > Symbol | Include acronyms that

off, on > Include data type acronym | express data types in

in identifiers signal and work vector

identifiers. For example,
‘rtB.1i32_signame’
identifies a 32-bit integer
block output signal named
‘signame’.

IncHierarchyInIds Real-Time Workshop > Include the system

off, on Symbols > Include system hierarchy number in

hierarchy number in
identifiers

variable identifiers. For
example, 's3_"' is the
system hierarchy number
in rtB.s3_signame for a
block output signal named
'signame'. Including the
system hierarchy number
in identifiers improves the
traceability of generated
code. To locate the
subsystem in which the
identifier resides, type
hilite_system('<S3>")
at the MATLAB prompt.
The argument specified
with hilite system
requires an uppercase S.

6-12

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

IncludeERTFirstTime (ERT)
off, on

Not available

Specify whether
Real-Time Workshop
Embedded Coder is to
include the firstTime
argument in the
model _initialize
function generated for
a Simulink model.

IncludeFileDelimiter (ERT)
Auto, UseQuote, UseBracket

Real-Time Workshop > Data
Placement > #include file
delimiter

Specify the delimiter

to be used for all data
objects that do not have a
delimiter specified in the
IncludeFile property.

IncludeHyperlinkInReport
(ERT)
off, on

Real-Time Workshop >
General > Include hyperlinks
to model

Link code segments to
the corresponding block
in the model. This option
increases code generation
time for large models.

IncludeMdlTerminateFcn
(ERT)
off, on

Real-Time Workshop >
Interface >Terminate function
required

Generate a terminate
function for the model.

IncludeRegionsInRTWFile
BlockHierarchyMap

Not available

For MathWorks use only.

IncludeRootSignalInRTWFile

Not available

For MathWorks use only.

IncludeVirtualBlocksInRTW
FileBlockHierarchyMap

Not available

For MathWorks use only.

6-13

6 Configuration Parameter Reference

6-14

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

InitF1tsAndDblsToZero (ERT)
off, on

Optimization > Use memset to
initialize floats and doubles
to 0.0

Optimize initialization

of storage for float

and double values.

Set this option if

the representation of
floating-point zero used by
your compiler and target
CPU is identical to the
integer bit pattern 0.

InlineInvariantSignals
off, on

Optimization > Inline
invariant signals

Precompute and inline the
values of invariant signals
in the generated code.

InlinedParameterPlacement
(ERT)

Hierarchical,
NonHierarchical

Optimization > Parameter
structure

Specify how generated
code stores global
(tunable) parameters.
Specify NonHierarchical
to trade off modularity for
efficiency.

InlinedPrmAccess (ERT)
Literals, Macros

Real-Time Workshop >
Symbols > Generate scalar
inlined parameters as

Specify whether inlined
parameters are coded
as numeric constants or
macros. Specify Macros
for more efficient code.

InsertBlockDesc (ERT)
off, on

Real-Time Workshop >
Comments > Simulink block
descriptions

Insert the contents of the
Description field from
the Block Parameters
dialog box into the
generated code as a
comment.

IsERTTarget Not available For MathWorks use only.
IsPILTarget Not available For MathWorks use only.
LaunchReport Real-Time Workshop > Display the HTML report
off, on General > Launch report after code generation

automatically

completes.

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

LifeSpan (ERT)
string

Optimization > Application
lifespan (days)

Optimize the size of
counters used to compute
absolute and elapsed
time, using the specified
application life span value.

LocalBlockOutputs
off, on

Optimization > Enable local
block outputs

Declare block outputs

in local (function) scope
wherever possible to
reduce global RAM usage.

LogVarNameModifier
none, rt_, rt

Real-Time Workshop >
Interface > MAT-file variable
name modifier

Augment the MAT-file
variable name.

MakeCommand
string - make_rtw

Real-Time
Workshop > General > Make
command

Specify the make command
and optional arguments
to be used to generate an
executable for the model.

ManglelLength
slint - 1

Real-Time Workshop >
Symbols > Minimum mangle
length

Specify the minimum
number of characters to be
used for name mangling
strings generated and
applied to symbols to
avoid name collisions.

A larger value reduces
the chance of identifier
disturbance when you
modify the model.

MatFileLogging (ERT)
off, on

Real-Time Workshop >
Interface > MAT-file logging

Generate code that logs
data to a MATLAB .mat
file.

MaxIdLength
slint - 31

Real-Time Workshop >
Symbols > Maximum
identifier length

Specify the maximum
number of characters that
can be used in generated
function, type definition,
and variable names.

6-15

6 Configuration Parameter Reference

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

MemSecPackage (ERT)
string -
--- None ---

Real-Time Workshop >
Memory Sections > Package

Specify the package that
contains the memory
sections that you want to

apply.

MemSecFuncInitTerm (ERT)
string - Default

Real-Time Workshop
> Memory Sections >
Initialize/Terminate

Apply memory sections to:

e Initialize/Start
functions

¢ Terminate functions

MemSecFuncExecute (ERT)
string - Default

Real-Time Workshop >
Memory Sections > Execution

Apply memory sections to:

e Step functions

¢ Run-time initialization
functions

® Derivative functions
e Enable functions

e Disable functions

MemSecDataConstants (ERT)
string - Default

Real-Time Workshop >
Memory Sections > Constants

Apply memory sections to:

¢ Constant parameters
¢ Constant block I/0

® Zero representation

MemSecDataIO (ERT)
string - Default

Real-Time Workshop
> Memory Sections >
Inputs/Outputs

Apply memory sections to:

¢ Root inputs

* Root outputs

6-16

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

MemSecDataInternal (ERT)
string - Default

Real-Time Workshop >
Memory Sections > Internal
data

Apply memory sections to:

e Block I/0
¢ D-work vectors
¢ Run-time model

® Zero-crossings

MemSecDataParameters (ERT)
string - Default

Real-Time Workshop
> Memory Sections >
Parameters

Apply memory sections to:

e Parameters

ModelReferenceCompliant

Not available

Set in SelectCallback
for a target to indicate
whether the target
supports model reference.

ModelStepFunctionPrototypeCd
(ERT)
off, on

MXob Hfaiipblant

Set in SelectCallback
for a target to indicate
whether the target
supports the ability to
control the function
prototypes of step
functions that are
generated for a Simulink
model. Default is off for
non-ERT targets and on
for ERT targets.

ModuleName (ERT)
string

Real-Time Workshop >
Placement > Module name

Specify the name of the
module that owns this
model.

ModuleNamingRule (ERT)
Unspecified, SameAsModel,

UserSpecified

Real-Time Workshop > Data
Placement > Module naming

Specify the rule to be used
for naming the module.

6-17

6 Configuration Parameter Reference

6-18

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

MultiInstanceErrorCode
(ERT)
None, Warning, Error

Real-Time Workshop >
Interface > Reusable code
error diagnostic

Specify the error
diagnostic behavior for
cases when data defined
in the model violates
the requirements for
generation of reusable
code.

MultiInstanceERTCode (ERT)
off, on

Real-Time Workshop >
Interface > Reusable code
error diagnostic

Specify the error
diagnostic behavior for
cases when data defined
in the model violates
the requirements for
generation of reusable
code.

NoFixptDivByZeroProtection
(Fixed-Point Toolbox)
off, on

Optimization > Remove code
that protects against division

arithmetic exceptions

Suppress generation of
code that guards against
division by zero for
fixed-point data.

OptimizeModelRefInitCode
(ERT)
off, on

Optimization > Optimize
initialization code for model
reference

Suppress generation of
initialization code to
accommodate the case
where this model is
referred to by a subsystem
that resets its states when
enabled. Select this option
if the model will never
be referred to by such

a subsystem. Simulink
reports an error if this
constraint is violated, in
which case you can disable
this optimization.

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

ParameterTunabilitylLossMsg
none, warning, error,

Diagnostics > Data
Validity > Detect Loss of
Tunability

Specifies diagnostic action
to take when a parameter
cannot be tuned because
it uses unsupported
functions or operators.

ParamNamingFcn

Not available

For MathWorks use only.

ParamNamingRule (ERT)
None, UpperCase, LowerCase,
Custom

Real-Time Workshop >
Symbols > Parameter naming

Select a rule that changes
spelling of all parameter
names.

ParamTuneLevel (ERT)
slint - 10

Real-Time Workshop > Data
Placement > Parameter tune
level

Specify whether the code
generator is to declare a
parameter data object as
tunable global data in the
generated code.

ParenthesesLevel
minimum, nominal, maximum

Real-Time Workshop > Code
Style > Parentheses Level

Control existence of
optional parentheses in
generated code.

PortableWordSizes (ERT)
off, on

Real-Time
Workshop > Interface > Enable
portable word sizes

Specify that model code
should be generated with
conditional processing
macros that allow the
same generated source
code files to be used both
for software-in-the-loop
(SIL) testing on the
host platform and for
production deployment on
the target platform.

PostCodeGenCommand
string

Not available

Add the specified post code
generation command to
the model’s build process.

6-19

6 Configuration Parameter Reference

6-20

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

PrefixModelToSubsysFcnNames
off, on

Real-Time Workshop >
Symbols > Prefix model name
to global identifiers

Add the model name as
a prefix to subsystem
function names for all
code formats. When
appropriate for the code
format, also add the
model name as a prefix
to top-level functions and
data structures. This
prevents compiler errors
due to name clashes
when combining multiple
models.

PreserveExpressionOrder
(ERT)
off, on

Real-Time Workshop > Code
Style > Preserve operand
order in expression

Control reordering of
commutable expressions.

PreserveIfCondition (ERT)
off, on

Real-Time Workshop > Code
Style > Preserve condition
expression in if statement

Control preservation of if
statement conditions.

PreserveName

Not available

For MathWorks use only.

PreserveNameWithParent

Not available

For MathWorks use only.

ProcessScript Not available For MathWorks use only.
ProcessScriptMode Not available For MathWorks use only.
ProfileTLC Real-Time Profile the execution time
off, on Workshop > Debug > Profile of each TLC file used to

TLC

generate code for this
model in HTML format.

PurelyIntegerCode (ERT)
off, on

Real-Time Workshop >
Interface > floating-point
numbers

Support floating-point
data types in the
generated code. This
option is forced on when
SupportNonInlinedSFcns
is on.

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

RTWCAPIParams Real-Time Workshop > Generate parameter

off, on Interface > Parameters in C tuning structures in C
API API.

RTWCAPISignals Real-Time Workshop > Generate signal structure

off, on Interface > Signals in C API in C APL

RTWCAPIStates Not available For MathWorks use only.

RTWVerbose Real-Time Workshop > Debug | Display messages

off, on > Verbose build indicating code generation

stages and compiler
output.

RegsInCode (ERT)
off, on

Real-Time Workshop >
Comments > Requirements in
block comments

Include specified
requirements in the
generated code as a

comment.
RetainRTWFile Real-Time Workshop > Debug | Retain the model.rtw
off, on > Retain .rtw file file in the current build

directory.
RollThreshold Optimization > Loop Specify the minimum
slint - 5 unrolling threshold signal width for which a

for loop is to be generated.

RootIOFormat (ERT)
Individual arguments,
Structure reference

Real-Time Workshop >
Interface > Pass root-level I/0
as

Specify how the code
generator is to pass
root-level I/O data into a
reusable function.

RSIM_STORAGE_CLASS_AUTO

Real-Time Workshop > RSim
Target > Force storage classes
to AUTO

Force all storage classes
for a model to Auto.

Savelog
off, on

Real-Time
Workshop > General > Save
build log

Save build log.

6-21

6 Configuration Parameter Reference

6-22

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

SFDataObjDesc (ERT)
off, on

Real-Time Workshop >
Comments > Stateflow object
descriptions

Insert Stateflow object
descriptions into the
generated code as a
comment.

ShowEliminatedStatements
off, on

Real-Time Workshop >
Comments > Show eliminated
blocks

Show statements for
eliminated blocks

as comments in the
generated code.

SignalDisplayLevel (ERT)
slint - 10

Real-Time Workshop > Data
Placement > Signal display
level

Specify whether the code
generator is to declare a
signal data object as global
data in the generated code.

SignallLabelMismatchMsg
None, Warning, Error

Diagnostics
> Connectivity > Signal
label mismatch

Specify the diagnostic
action to take when a
signal label mismatch
occurs.

SignalNamingFcn

Not available

For MathWorks use only.

SignalNamingRule (ERT)
None, UpperCase, LowerCase,
Custom

Real-Time Workshop >
Symbols > Signal naming

Specify a rule the code
generator is to use that
changes spelling of all

signal names.

SimulinkBlockComments
off, on

Real-Time Workshop >
Comments > Simulink block
comments

Insert Simulink block
names as comments above
the generated code for
each block.

SimulinkDataObjDesc (ERT)
off, on

Real-Time Workshop >
Comments > Simulink data
object descriptions

Insert Simulink data
object descriptions into
the generated code as
comments.

StateBitsets (Stateflow)
off, on

Optimization > Use bit sets
for storing state configuration

Use bit sets for storing
state configuration.

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

SupportAbsoluteTime (ERT)
off, on

Real-Time Workshop >
Interface > absolute time

Support absolute time in
the generated code. Blocks
such as the Discrete
Integrator might require
absolute time.

SupportComplex (ERT)
off, on

Real-Time Workshop >
Interface > complex numbers

Support complex data
types in the generated
code.

SupportContinuousTime
(ERT)
off, on

Real-Time Workshop >
Interface > continuous time

Support continuous
time in the generated
code. This allows blocks
to be configured with

a continuous sample
time. Not available if
SuppressErrorStatus is
on.

SupportNonFinite (ERT)
off, on

Real-Time Workshop >
Interface > nonfinite numbers

Support nonfinite values
(inf, nan, -inf) in the
generated code. This
option is forced on when
SupportNonInlinedSFcns
is on.

SupportNonInlinedSFcns
off, on

Real-Time Workshop >
Interface > noninlined
S-functions

Support S-functions that
have not been inlined
with a TLC file. Inlined
S-functions generate the
most efficient code.

SuppressErrorStatus (ERT)
off, on

Real-Time Workshop >
Interface > Suppress error
status in real-time model data
structure

Remove the error status
field of the real-time model
data structure to preserve
memory. When on,
SupportContinuousTime
is off.

SystemCodeInlineAuto

Not available

For MathWorks use only.

6-23

6 Configuration Parameter Reference

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

SystemTargetFile Real-Time Workshop > Specify a system target
string General > System target file file.
TargetBitPerChar Hardware Specify the number of
slint - 8 Implementation > Emulation | bits used to represent the
hardware > char C/C++ type char.
TargetBitPerInt Hardware Specify the number of
slint - 32 Implementation > Emulation | bits used to represent the
hardware > int C/C++ type int.
TargetBitPerLong Hardware Specify the number of
slint - 32 Implementation > Emulation | bits used to represent the
hardware > long C/C++ type long.
TargetBitPerShort Hardware Specify the number of
slint - 16 Implementation > Emulation | bits used to represent the
hardware > short C/C++ type short.
TargetEndianess Hardware Specify whether the
Unspecified, LittleEndian, Implementation > Emulation | byte ordering of the
BigEndian hardware > Byte ordering target is Big Endian
(most significant byte
first) or Little Endian
(least significant byte
first). If left unspecified,
Real-Time Workshop
generates executable code
to compute the result.
TargetFcnLib Not available For MathWorks use only.

6-24

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

TargetHWDeviceType
string

Hardware
Implementation > Emulation
hardware > Device type

Specify a predefined
hardware device to define
the C or C++ language
constraints for your
microprocessor or Custom
if your microprocessor

is not listed. Specify
the string "MATLAB Host
Computer" to target the
current MATLAB host
machine.

TargetIntDivRoundTo
Zero, Floor, Undefined

Hardware

Implementation > Emulation
hardware > Signed integer
division rounds to

Specify how your C/C++
compiler rounds the result
of dividing two signed
integers. This information
enables the code generator
to generate efficient C or
C++ code from the model.

TargetLang
C, C++

Real-Time
Workshop > Language

Specify whether
Real-Time Workshop
is to generate C or C++
code.

6-25

6 Configuration Parameter Reference

Configuration Parameters

Parameter and Values Dialog Box Equivalent Description
TargetLibSuffix Not available Control the suffix used
string for naming a target’s

dependent libraries (for
example, target.a).
An example of when
you might use this is for
generated model reference
libraries. If you do not
set this parameter, on a
Windows system, you get
modelName_rtwlib.1lib
and on a UNIX

system, you get
modelName_rtwlib.a.

Target0S (ERT) Real-Time Workshop > Specify the target
BareBoardExample, Templates > Target operating | operating system for the
VxWorksExample system example main ert_main.c

or ert_main.cpp.
BareBoardExample is

a generic example that
assumes no operating
system. VxWorksExample
is tailored to the VxWorks
real-time operating

system.
TargetPreCompLibLocation Not available Control the location of
string precompiled libraries.

If you do not set this
parameter, Real-Time
Workshop uses the
location specified in
rtwmakecfg.m.

6-26

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

TargetPreprocMaxBitsSint
int - 128

Not available

Specify the maximum
number of bits that the
target C preprocessor can
use for signed integer
math.

TargetPreprocMaxBitsUint
int - 128

Not available

Specify the maximum
number of bits that the
target C preprocessor can
use for unsigned integer
math.

TargetShiftRightIntArith
off, on

Hardware

Implementation > Emulation
hardware > Shift right on a
signed integer as arithmetic
shift

Specify that your C/C++
compiler implements a
right shift of a signed
integer as an arithmetic
right shift. Virtually all
compilers do this.

TargetTypeEmulationWarn

Not available

When greater than or

SuppresslLevel equal to 2, suppress

int - 0 warning messages that
Real-Time Workshop
displays when emulating
integer sizes in rapid
prototyping environments.

TargetWordSize Hardware Specify the number of bits

slint - 32 Implementation > Emulation | that the target processor

hardware > native word size

can process at one time.
Providing the processor’s
native word size allows
for more efficient code
to be generated when
converting the endian
byte order of data types.

6-27

6 Configuration Parameter Reference

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

TemplateMakefile
string - grt_default_tmf

Real-Time Workshop >
General > Template makefile

Specify the current
template makefile for
building a Real-Time
Workshop target.

TLCAssert Real-Time Produce a TLC stack
off, on Workshop > Debug > Enable trace when the argument
TLC assertion to the assert directives
evaluates to false.
TLCCoverage Real-Time Generate .log files
off, on Workshop > Debug > Start containing the number
TLC coverage when of times each line of TL.C
generating code code is executed during
code generation.
TLCDebug Real-Time Start the TLC debugger
off, on Workshop > Debug > Start during code generation at
TLC debugger when the beginning of the TLC
generating code program. TLC breakpoint
statements automatically
invoke the TLC debugger
regardless of this setting.
TLCOptions Real-Time Specify additional TLC
string Workshop > General > TLC command line options.

options

UseTempVars (Stateflow)
off, on

Optimization > Minimize
array reads using temporary
variables

Minimize array reads in
global memory by using
temporary variables.

UtilityFuncGeneration
Auto, Shared location

Real-Time Workshop >
Interface > Utility function
generation

Specify where utility
functions are to be
generated.

6-28

Parameter and Values

Configuration Parameters
Dialog Box Equivalent

Description

ZeroExternalMemoryAt Optimization > Remove root Suppress code that
Startup (ERT) level I/0 zero initialization initializes root-level I/O
off, on data structures to zero.
ZeroInternalMemoryAt Optimization > Remove Suppress code that
Startup (ERT) internal state zero initializes global data
off, on initialization structures (for example,

block 1I/0 data structures)
to zero.

6-29

6 Configuration Parameter Reference

6-30

7

Configuration Parameters
Dialog Box Reference

Solver (p. 7-2)

Optimization (p. 7-8)

Diagnostics (p. 7-22)

Hardware Implementation (p. 7-23)

Real-Time Workshop (General)
(p. 7-35)

Comments (p. 7-45)
Symbols (p. 7-49)
Custom Code (p. 7-51)
Debug (p. 7-56)
Interface (p. 7-61)

Describes Solver pane options that
pertain to code generation

Describes Optimization pane options
that pertain to code generation

Describes Diagnostics pane options
that pertain to code generation

Describes Hardware Implementation
pane options that pertain to code
generation

Describes Real-Time Workshop
(General) pane options

Describes Comments pane options
Describes Symbols pane options
Describes Custom Code pane options
Describes Debug pane options

Describes Interface pane options

7 Configuration Parameters Dialog Box Reference

Solver

e “Start time” on page 7-2
® “Stop time” on page 7-3
e “Type” on page 7-3

¢ “Tasking mode for periodic sample times” on page 7-5

Start time

Enter a double-precision value scaled to seconds specifying simulation or
generated code start time

Default: 0.0

® A start time other than 0.0 represents an offset, and must be less than or
equal to the stop time. An example of when you might use an offset is to set
up a delay to accommodate some type of initialization.

¢ The values of block parameters with initial conditions must match the
initial condition settings at the specified start time.

e Simulation time is not the same as clock time. For example, running
a simulation for 10 seconds usually does not take 10 seconds. Total
simulation time depends on factors such as model complexity, solver step
sizes, and computer speed.

Command line parameter
StartTime

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Solver

Stop time

Enter a double-precision value scaled to seconds specifying simulation or
generated code stop time

Default: 10

® Stop time must be greater than or equal to the start time.

® Specify inf to run a simulation or generated program until you explicitly
pause or stop it.

o Ifthe stop time is the same as the start time, the simulation or generated
program runs for one step.

® Simulation time is not the same as clock time. For example, running
a simulation for 10 seconds usually does not take 10 seconds. Total
simulation time depends on factors such as model complexity, solver step
sizes, and computer speed.

e If your model includes blocks that depend on absolute time and you are
creating a design that runs indefinitely, see Blocks That Depend on
Absolute Time.

Command line parameter
StopTime

Recommended settings

Debugging No impact

Traceability No impact

Efficiency No impact

Safety precaution No impact
Type

Specify the type of solver to be applied to your model: variable-step or
fixed-step

7 Configuration Parameters Dialog Box Reference

The solver computes the next time as the sum of the current time and the
step size.

Variable-step (default)

Step size varies from step to step, depending on model dynamics.

® Reduces step size when model states change rapidly, to maintain
accuracy.

® Increases step size when model states change slowly, to avoid
unnecessary steps.

Recommended if the model’s states change rapidly or contain
discontinuities. It shortens simulation time significantly because
it requires fewer time steps than a fixed-step solver to achieve a
comparable level of accuracy.

Fixed-step

Step size remains constant throughout the simulation.

Required for code generation, unless you use an S-function or RSim
target.

Dependencies
Selecting Variable-step enables the following options:

Max step size

Min step size

Initial step size

Solver

Relative tolerance

Absolute tolerance

Zero crossing control

Number of consecutive min step size violations allowed
Consecutive zero crossings relative tolerance

Number of consecutive zero crossings allowed

Solver

Selecting Fixed-step enables the following options:

* Solver

¢ Periodic sample time constraint

* Fixed-step size (fundamental sample time)

¢ Tasking mode for periodic sample times

¢ Higher priority value indicates higher task priority

* Automatically handle data transfers between tasks

Command line parameter
SolverType

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

® Choosing a Solver Type

® Determining Step Size for Discrete Systems

Tasking mode for periodic sample times
Indicate how blocks with periodic sample times are to execute

Auto (default)
Single-tasking execution is used if:
¢ Your model contains one sample time.

® Your model contains a continuous and a discrete sample time, and
the fixed-step size is equal to the discrete sample time.

7 Configuration Parameters Dialog Box Reference

Selects multitasking execution for a models operating at different
sample rates.

SingleTasking
Process all blocks through each stage of simulation (for example,
calculating output and updating discrete states) together. For more
information, see Single-Tasking Mode.

MultiTasking
Process groups of blocks with the same execution priority through each
stage of simulation (for example, calculating output and updating
discrete states) based on task priority. Multitasking mode helps to
create valid models of real-world multitasking systems, where sections
of your model represent concurrent tasks. For more information, see
Multitasking and Pseudomultitasking Modes.

The Multitask rate transition option on the Diagnostics > Sample Time

pane allows you to adjust error checking for sample rate transitions between
blocks that operate at different sample rates.

Dependency
Enabled by selecting Fixed-step solver type.

Command line parameter
SolverMode

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

e Rate Transition block

Solver

Model Execution and Rate Transitions
Single-Tasking Versus Multitasking Operation
Sample Rate Transitions

Single-Tasking and Multitasking Execution of a Model: an Example

7-7

7 Configuration Parameters Dialog Box Reference

Optimization

® “Block reduction” on page 7-8

¢ “Conditional input branch execution” on page 7-9

¢ “Implement logic signals as boolean data (vs. double)” on page 7-10
® “Signal storage reuse” on page 7-11

¢ “Inline parameters” on page 7-12

e “Application lifespan (days)” on page 7-14

e “Enable local block outputs” on page 7-15

® “Reuse block outputs” on page 7-16

® “Ignore integer downcasts in folded expressions” on page 7-17

¢ “Inline invariant signals” on page 7-18

¢ “Eliminate superfluous temporary variables (Expression folding)” on page
7-19

® “Loop unrolling threshold” on page 7-19

* “Remove code from floating-point to integer conversions that wraps
out-of-range values” on page 7-20

Block reduction
Reduce execution time by collapsing or removing groups of blocks

Checked(default)
Simulink searches for and reduces the following block patterns:

¢ Accumulators—pattern consisting of a constant block, a Sum block,
and feedback through a Unit Delay block

¢ Redundant type conversions—for example, an int type conversion
block with an input and output of type int

® Dead code—Dblocks or signals in an unused code path

® Fast-to-slow Rate Transition block in a single-tasking system—the
Rate Transition block’s input frequency is faster than its output
frequency

Optimization

Unchecked
Simulink does not search for instances of block patterns for block
reduction optimization. Simulation and generated code are not
optimized.

Tips

¢ Block reduction is only intended to remove the code that represents
execution of a block. Other supporting data, such as definitions for sample
time and data types might remain in the generated code.

¢ Tunable parameters do not prevent a block from being reduced by dead
code elimination.

Command line parameter
BlockReduction

Recommended settings

Debugging Clear
Traceability Clear
Efficiency Set
Safety precaution No impact

More information

¢ “Block Reduction”

¢ “Single-Tasking Execution”

Conditional input branch execution

Improve model execution when the model contains Switch and Multiport
Switch blocks

7 Configuration Parameters Dialog Box Reference

Checked (default)
Only the blocks required to compute the control input and the data
input selected by the control input are executed. This optimization
speeds execution of code generated from the model. Limits to Switch
block optimization:

¢ Only blocks with -1 (inherited) or inf (Constant) sample time can
participate.

® Blocks with outputs flagged as test points cannot participate.
¢ No multirate block can participate.
¢ Blocks with states cannot participate.

¢ Only S-functions with option
SS_OPTION_CAN_BE_CALLED CONDITIONALLY set
can participate.

Unchecked

Executes all blocks driving the Switch block input ports at each time
step.

Command line parameter
ConditionallyExecuteInputs

Recommended settings

Debugging No impact
Traceability Set
Efficiency Set
Safety precaution No impact

More information
“Conditional Input Execution”

Implement logic signals as boolean data (vs. double)
Enables error detection for mixed double/Boolean types.

7-10

Optimization

Checked (default)
Enables Boolean type checking, resulting in an error when double
signals are connected to blocks that prefer Boolean inputs. Generated
code requires less memory with this enabled.

Unchecked
Does not produce an error when double signals are connected to blocks
that prefer Boolean inputs. This ensures compatibility with models
created by earlier versions of Simulink that support only double data

types.

Dependency

Disable for models created with a version of Simulink that supports only
signals of type double.

Command line parameter
BooleanDataType

Recommended settings

Debugging No impact
Traceability No impact
Efficiency Set

Safety precaution No impact

More information
“Implement Logic Signals as Boolean Data”

Signal sl'orclge reuse
Reuse signal memory. Only applies to signals with storage class Auto.

Checked (default)

Instructs Real-Time Workshop to reuse signal memory, reducing the
memory requirement of your real-time program.

7-11

7 Configuration Parameters Dialog Box Reference

7-12

Unchecked
Makes all block outputs global and unique, which in many cases
significantly increases RAM and ROM usage.

Dependencies
Enables the following options

¢ Enable local block outputs
¢ Reuse block outputs

¢ Eliminate superfluous temporary variables (Expression folding)

Command line parameter
OptimizeBlockIOStorage

Recommended settings

Debugging Clear
Traceability Clear
Efficiency Set
Safety precaution No impact

More information

e “Signal Storage, Optimization, and Interfacing”

e “Signal Storage Concepts”

Inline parameters

Transform tunable parameters into constant values
Checked
Enabling Inline parameters has three effects:

¢ Real-Time Workshop uses the numerical values of model parameters,
instead of their symbolic names, in generated code.

Optimization

* Reduces global RAM usage, because parameters are not declared in
the global parameters structure.

¢ The Configure button becomes enabled. Clicking the Configure

button opens the Model Parameter Configuration dialog box.

Unchecked (default)

Uses model parameters symbolic names in generated code.

Tips

When a top-level model uses referenced models:

¢ All referenced models must specify Inline parameters to be on.

¢ The top-level model can specify Inline parameters to be on or off.

Dependencies

Disable for referenced models in a model reference hierarchy.

Enables the following options:

¢ Configure button

¢ Inline invariant signals

Command line parameter
InlineParams

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

Clear
Set
Set

No impact

7-13

7 Configuration Parameters Dialog Box Reference

7-14

More information

e “Parameter Storage, Interfacing, and Tuning”

e “Inline Parameters”

Application lifespan (days)

Optimize the size of counters used to compute absolute and elapsed time
Default: inf
Min: 8 bits

Max: inf

Tips
¢ A timer will allocate 64 bits of memory for a timer if you specify a value of
inf.

¢ To minimize the amount of RAM used by time counters, specify a lifespan
no longer than necessary.

¢ Must be the same for top and referenced models.

Command line parameter
LifeSpan

Recommended settings

Debugging No impact
Traceability No impact
Efficiency Finite value
Safety precaution inf

Optimization

More information

e “Application Lifespan”

sing Timers in Asynchronous Tasks
e “U T Asynch Tasks”

Enable local block outputs
Specify whether block signals are declared locally or globally

Checked (default)
Block signals are declared locally in functions.

Unchecked
Block signals are declared globally.
Tips

e If it is not possible to declare an output as a local variable, the generated
code declares the output as a global variable.

¢ If you are constrained by limited stack space, you can turn Enable local
block outputs off and still benefit from memory reuse.

Dependency
Enabled by Signal storage reuse.

Command line parameter
LocalBlockOutputs

Recommended settings

Debugging Clear
Traceability No impact
Efficiency Set
Safety precaution No impact

7-15

7 Configuration Parameters Dialog Box Reference

More information
“Signals with Auto Storage Class”

Reuse block outputs

Specify signal storage memory usage

Checked (default)

¢ Real-Time Workshop reuses signal memory whenever possible,
reducing stack size where signals are being buffered in local variables.

¢ Selecting this option trades code traceability for code efficiency.

Unchecked
Signals are stored in unique locations.

Dependency
Enabled by Signal storage reuse.

Command line parameter
BufferReuse

Recommended settings

Debugging Clear
Traceability Clear
Efficiency Set
Safety precaution No impact

More information

4

* “Signal Storage, Optimization, and Interfacing’

® “Signals with Auto Storage Class”

7-16

Optimization

Ignore integer downcasts in folded expressions

Specify how Real-Time Workshop handles casting of intermediate variables
in mixed-bit systems

Checked
Real-Time Workshop collapses block computations into a single
expression, avoiding casts of intermediate variables, improving
efficiency. Check this option if

® You are concerned with generating the least amount of code possible

¢ Code generation and simulation results do not need to match

Unchecked (default)
The results of 8- and 16-bit integer expressions are explicitly downcast.

Tip

Expressions involving 8- and 16-bit arithmetic are less likely to overflow in
code than they are in simulation. Therefore, it is good practice to turn off
Ignore integer downcasts in folded expressions for safety, to ensure that
answers obtained from generated code are consistent with simulation results.

Command line parameter
EnforceIntegerDowncast

Recommended settings

Debugging Clear
Traceability No impact
Efficiency Set
Safety precaution Clear

More information
“Expression Folding Options”

7-17

7 Configuration Parameters Dialog Box Reference

Inline invariant signals
Transform symbolic names of invariant signals into constant values

Checked (default)
Real-Time Workshop uses the numerical values of model parameters,
instead of their symbolic names, in generated code.

Unchecked
Uses symbolic names of model parameters in generated code.

For more information, see “Inline Invariant Signals”.

Tips

® An invariant signal is a block output signal that does not change.

® An invariant signal is not the same as an invariant constant. To inline
invariant constants, select Inline parameters.

Dependency

Enabled byInline parameters.

Command line parameter
InlineInvariantSignals

Recommended settings

Debugging Clear
Traceability Clear
Efficiency Set
Safety precaution No impact

More information
“Inline Invariant Signals”

7-18

Optimization

Eliminate superfluous temporary variables
(Expression folding)
Collapse block computations into single expressions

Checked (default)
¢ Enables expression folding.

¢ Eliminates temporary variables, incorporating the information into
the main code statement.

® Improves code readability and efficiency.

Unchecked
Disables expression folding.

Dependency
Enabled by Signal storage reuse.

Command line parameter
ExpressionFolding

Recommended settings

Debugging Clear
Traceability No impact
Efficiency Set
Safety precaution No impact

More information
“Expression Folding”

Loop unrolling threshold

Specify minimum signal or parameter width for which a for loop is generated

Default: 5

7-19

7 Configuration Parameters Dialog Box Reference

Command line parameter
RollThreshold

Recommended settings

Debugging No impact
Traceability No impact
Efficiency >0

Safety precaution No impact

More information
“Loop Unrolling Threshold”

Remove code from floating-point to integer
conversions that wraps out-of-range values

Remove wrapping code that handles out-of-range floating-point to integer
conversion results

Checked
Removes code that ensures the execution of the generated code produces
the same results as simulation when out-of-range conversions occur.
Select this option if code efficiency is critical to your application and the
following conditions are true for at least one block in the model:

¢ Computing the block’s outputs or parameters involves converting
floating-point data to integer or fixed-point data.

¢ The block’s Saturate on integer overflow option is disabled.

Unchecked (default)
Out-of-range values simulation and generated code results match. The
generated code is larger than when this option is checked.

7-20

Optimization

Tips

¢ Enabling this option affects code generation results only for out-of-range

values and hence cannot cause code generation results to differ from
simulation results for in-range values.

® The code generator uses the fmod function to handle out-of-range

conversion results.

Command line parameter
EfficientFloat2IntCast

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

Clear
Clear
Set

Clear

More information

“Remove Code from Floating-Point to Integer Conversions That Wraps

Out-of-Range Values”

7-21

7 Configuration Parameters Dialog Box Reference

7-22

Diagnostics

Model Verification block enabling

Enable model verification blocks in the current model either globally or locally

Use local settings (default)
Enables or disables blocks based on the value of the Enable assertion
parameter of each block. If a block’s Enable assertion parameter is
on, the block is enabled; otherwise, the block is disabled.

Enable All
Enables all model verification blocks in the model regardless of the
settings of their Enable assertion parameters.

Disable All
Disables all model verification blocks in the model regardless of the
settings of their Enable assertion parameters.

Command line parameter
AssertControl

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Diagnostics Options”

Hardware Implementation

Hardware Implementation

® “Device type” on page 7-23

e “Number of bits: char” on page 7-27

e “Number of bits: short” on page 7-28

® “Number of bits: int” on page 7-28

e “Number of bits: long” on page 7-29

® “Number of bits: native word size” on page 7-30

¢ “Byte ordering” on page 7-31

® “Signed integer division rounds to” on page 7-32

e “Shift right on a signed integer as arithmetic shift” on page 7-32

¢ “Emulation hardware (code generation only)” on page 7-33

Device type
Specify embedded hardware device

Selecting a device type specifies the hardware device to define your system’s
constraints:

¢ Default hardware properties appear as the initial values.

¢ Options with only one possible value cannot be changed.

¢ Options with more than one possible value provide a pulldown list of legal
values.

e Static values are displayed in the table below. Options that you can modify
are identified with an x.

7-23

7 Configuration Parameters Dialog Box Reference

7-24

Key: word size = native word size
rounds to = Signed integer division rounds to
shift right = Shift right on a signed integer as arithmetic shift
Device type Number of bits Byte rounds| shift
. deri i
char | short | int long | word ordering, to right
size
Unspecified (assume 8 16 32 32 32 Un- X Set
32-bit Generic) (default) specified
Custom X X X X X X b4
32-bit Generic 16 32 32 32 X X Set
Embedded Processor
32-bit PowerPC 8 16 32 32 32 Big Zero Set
Endian
ARM 7/8/9 16 32 32 X X X b4
Freescale MPC5500 16 32 32 32 X Zero Set
Freescale 68332 16 32 32 32 Big X Set
Endian
Infineon TriCore 8 16 32 32 32 Little X Set
Endian
NEC V850 16 32 32 32 X X X
Renesas (Hitachi) 16 32 32 32 X X X
SH-2, SH-4
TI C6000 16 32 40 32 b Zero Set
16-bit Generic 16 16 32 16 X X Set
Embedded Processor
Renesas M16C 8 16 16 32 16 Little X X
Endian
Freescale DSP563xx 8 16 16 32 16 X X Set
(16-bit mode)

Hardware Implementation

Key: word size = native word size
rounds to = Signed integer division rounds to
shift right = Shift right on a signed integer as arithmetic shift
Device type Number of bits Byte rounds| shift
. deri i
char | short | int long | word orcering) to right
size
Freescale HC(S)12 8 16 16 32 16 Big X Set
Endian
Infineon C16x, XC16x 8 16 16 32 16 Little Zero Set
Endian
STMicroelectronics 8 16 16 32 16 Little Zero Set
ST10 Endian
TI C2000 16 16 16 32 16 X Zero Set
TI C5000 16 16 16 32 16 Big Zero Set
Endian
8-bit Generic 8 16 16 32 8 X X Set
Embedded Processor
8051 Compatible 16 16 32 X X Clear
Freescale 68HC11 16 16 32 8 Big X Set
Endian
Freescale HC08 8 16 16 32 8 Big X Set
Endian
32-bit Generic Real 8 16 32 32 32 X X Set
Time Simulator
32-bit Real-Time 8 16 32 32 32 Little Zero Set
Windows Target Endian
32-bit xPC Target 8 16 32 32 32 Little b Set
(Intel Pentium) Endian
32-bit xPC Target 8 16 32 32 32 Little X Set
(AMD Athlon) Endian

7-25

7 Configuration Parameters Dialog Box Reference

Key: word size = native word size
rounds to = Signed integer division rounds to
shift right = Shift right on a signed integer as arithmetic shift
Device type Number of bits Byte rounds| shift
char | short | int long V\.IOI“d ordering| fo right
size
SGI UltraSPARC IIi 8 16 32 32 32 Big X Set
Endian
ASIC/FPGA NA NA NA NA NA NA NA NA
Dependency

* Selecting ASIC/FPGA enables the Emulation hardware (code
generation only) subpane.

For all other options, sets

¢ char

¢ short

® int

¢ long

* native word size

¢ Byte ordering

¢ Signed integer division rounds to

¢ Shift right on a signed integer as arithmetic shift

Command line parameter
TargetHWDeviceType

7-26

Hardware Implementation

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Device type”

Number of bits: char
Specify the character bit length
Default: 8

Minimum: 8

Maximum: 32

Tip

All values must be a multiple of 8.

Command line parameter
TargetBitPerChar

Recommended settings

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact

7-27

7 Configuration Parameters Dialog Box Reference

More information
“Number of bits”

Number of bits: short
Specify the data bit length
Default: 16

Minimum: 8

Maximum: 32

Tip

All values must be a multiple of 8.

Command line parameters
TargetBitPerShort

Recommended settings

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact

More information
“Number of bits”

Number of bits: int
Specify the data integer bit length

Default: 32

7-28

Hardware Implementation

Minimum: 8

Maximum: 32

Tip

All values must be a multiple of 8.

Command line parameters
TargetBitPerInt

Recommended settings

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact

More information
“Number of bits”

Number of bits: long
Specify the data bit lengths
Default: 32

Minimum: 8

Maximum: 32

Tip

All values must be a multiple of 8.

7-29

7 Configuration Parameters Dialog Box Reference

Command line parameters
TargetBitPerLong

Recommended settings

Debugging No impact
Traceability No impact
Efficiency Target specific
Safety precaution No impact

More information
“Number of bits”

Number of bits: native word size
Specify the microprocessor native word size
Default: 32

Minimum: 8

Maximum: 32

Tip

All values must be a multiple of 8.

Command line parameters
TargetWordSize

Recommended settings

Debugging No impact
Traceability No impact

7-30

Hardware Implementation

Efficiency

Safety precaution

Target specific

No impact

More information
“Number of bits”

Byte ordering

Specify target hardware byte ordering

Big Endian

Specifies most significant byte first.

Little Endian

Specifies least significant byte first.

Unspecified (default)

Real-Time Workshop generates code that determines the endianness of

the target; this is the least efficient option.

Command line parameter
TargetEndianess

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

No impact
No impact
No impact

No impact

More information
“Byte ordering”

7-31

7 Configuration Parameters Dialog Box Reference

7-32

Signed integer division rounds to
Specify how to produce a signed integer quotient

An ANSI C conforming compiler, used to compile code, rounds the result of
dividing one signed integer by another based on the option selected:

Zero
If the quotient is between two integers, the compiler chooses the integer
that is closer to zero as the result.

Floor
If the quotient is between two integers, the compiler chooses the integer
that is closer to negative infinity.

Undefined (default)
The compiler’s rounding behavior is undefined if either or both operands
are negative

Command line parameter
TargetIntDivRoundTo

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Signed integer division rounds to”

Shift right on a signed integer as arithmetic shift
Specify how your compiler rounds the result of two signed integers

Hardware Implementation

Checked (default)
Real-Time Workshop generates simple efficient code whenever the
Simulink model performs arithmetic shifts on signed integers.

Unchecked
Real-Time Workshop generates fully portable but less efficient code to
implement right arithmetic shifts.

Tips

® The preferred setting is to select this option if the C compiler implements a
signed integer right shift as an arithmetic right shift.

® An arithmetic right shift fills bits vacated by the right shift with the value
of the most significant bit, which indicates the sign of the number in twos
complement notation.

Command line parameter
TargetShiftRightIntArith

Recommended settings

Debugging No impact
Traceability No impact
Efficiency Set

Safety precaution No impact

More information
“Shift right on a signed integer as arithmetic shift”

Emulation hardware (code generation only)
Specify current hardware characteristics

7-33

7 Configuration Parameters Dialog Box Reference

7-34

If the current hardware differs from the target hardware, you can generate
code that runs on the current hardware but behaves as if it had been
generated for and executed on the target hardware. The Embedded
hardware (simulation and code generation) subpane specifies the target
hardware properties. The Emulation hardware (code generation only)
subpane is used to specify the current hardware properties.

Checked (default)
The hardware used to test the code generated from the model is the
same as the production hardware, or has the same characteristics.

Unchecked
The hardware used to test the code generated from the model has
different characteristics than the production hardware.

Dependency

Enables the Emulation hardware subpane.

Command line parameter
ProdEqTarget

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Specifying Emulation Hardware Characteristics”

Real-Time Workshop (General)

Real-Time Workshop (General)

® “System target file” on page 7-35

¢ “Language” on page 7-36

® “Generate HTML report” on page 7-37

¢ “Launch report automatically” on page 7-38
¢ “TLC options” on page 7-39

® “Generate makefile” on page 7-40

e “Make command” on page 7-40

¢ “Template makefile” on page 7-42

® “Generate code only” on page 7-43

e “Build/Generate code” on page 7-44

System target file
Specify the system target file

Default: grt.tlc
You can specify the system target file in 2 ways:

¢ Use the System Target File Browser by clicking on the Browse button,
which lets you select a preset target configuration consisting of a system
target file, template makefile, and make command.

¢ Enter the name of your system target file in this field. Click Apply or OK
to configure for that target.

Tip

The System Target File Browser lists all system target files found on the
MATLAB path. Using some of these might require additional licensed
products, such as Real-Time Workshop Embedded Coder.

Command line parameter
SystemTargetFile

7-35

7 Configuration Parameters Dialog Box Reference

7-36

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

* “System Target File”
e “Available Targets”

Language
Specify C or C++ code generation

C (default)
Real-Time Workshop generates .c files and places the files in your
build directory.

C++
Real-Time Workshop generates .cpp files and places the files in your
build directory.

Tip
You might need to configure Real-Time Workshop to use the appropriate

compiler before you build a system.

Command line parameter
TargetLang

Recommended settings

Debugging No impact
Traceability No impact

Real-Time Workshop (General)

Efficiency No impact

Safety precaution No impact

More information

¢ “Language”

¢ “Choosing and Configuring a Compiler”

Generate HTML report

Document generated code in an HTML report

Checked
Generates a navigable summary of code generation source files in an
HTML report and places the files in an html directory within the build
directory. In the report,

¢ There is a summary listing version and date information, and a link
to open configuration settings used for generating the code, including
TLC options and Simulink model settings.

¢ Global variable instances are hyperlinked to their definitions.

¢ Block header comments in source files are hyperlinked back to the
model; clicking one of these causes the block that generated that
section of code to be highlighted (this feature requires Real-Time
Workshop Embedded Coder and the ERT target).

Unchecked (default)
Summary of files not generated.

Dependency

Enables Launch report automatically.

Command line parameter
GenerateReport

7-37

7 Configuration Parameters Dialog Box Reference

Recommended settings

Debugging Set
Traceability Set
Efficiency No impact
Safety precaution No impact

More information

® “Generate HTML Report”
¢ “Viewing Generated Code in Generated HTML Reports”

Launch report automatically
Specify automatically displaying HTML reports

Checked (default when enabled)
The HTML summary and index are automatically loaded into a new
browser window and displayed.

Unchecked
The HTML report is not opened, but is still available in the html
directory.

Dependency
Enabled by Generate HTML Report.

Command line parameter
LaunchReport

Recommended settings

Debugging Set
Traceability Set

7-38

Real-Time Workshop (General)

Efficiency

Safety precaution

No impact

No impact

More information
“Generate HTML Report”

TLC options
Specify additional TLC options

You can enter TLC command line options and arguments.

Tips

¢ Specifying TLC options does not add flags to the Make Command field.

¢ The Generated HTML Report summary section lists TLC options specified

for the build in which the report is generated.

Command line parameter
TLCOptions

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

No impact
No impact
No impact

No impact

More information

* “Command-Line Arguments”

¢ “TLC Options”

7-39

7 Configuration Parameters Dialog Box Reference

7-40

Generate makefile

Specify generation of a makefile

Checked (default)
Generates a makefile for a model during the build process.

Unchecked
Suppress the generation of a makefile. When you clear this option
you must set up any post code generation build processing, including
compilation and linking, as a user-defined command.

Dependencies
Clearing this option disables the following options:

¢ Make command

* Template makefile

Command line parameter
GenerateMakefile

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

® “Generate Makefile”

® “Customizing Post Code Generation Build Processing”

Make command
Specify make command

Real-Time Workshop (General)

Default: make rtw

The make command, a high-level M-file command, invoked when a build is
initiated, controls the Real-Time Workshop build process.

e Each target has an associated make command, automatically supplied when
you select a target file using the System Target File Browser.

® Third-party targets might supply a make command. See the vendor’s
documentation.

® Arguments can be specified in this field, and are passed into the
makefile-based build process.

Tip

Most targets use the default command.

Dependency
Enabled by Generate makefile.

Command line parameter
MakeCommand

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

e “Make Command”

¢ “Template Makefiles and Make Options”

7-41

7 Configuration Parameters Dialog Box Reference

7-42

Template makefile
Specify template makefile

Default: grt_default_tmf

The template makefile determines which compiler runs, during the make
phase of the build, to compile the generated code. There are two ways to
specify template makefiles:

* Generate a value by selecting a target configuration using the System
Target File Browser.

¢ Explicitly enter a custom template makefile filename (including the
extension). The file must be on the MATLAB path.
Tips

¢ [f a filename extension is not included for a custom template makefile,
Real-Time Workshop attempts to find and execute an M-file.

® You can customize your build process by modifying an existing template
makefile or providing your own template makefile.

Dependency
Enabled by Generate makefile.

Command line parameter
TemplateMakefile

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

Real-Time Workshop (General)

More information

o “Template Makefile”

¢ “Template Makefiles and Make Options”

e “Available Targets”

Generate code only

Specify code generation and executable build

Checked

The build process generates code and a make file, but does not invoke the
make command. When you select this option, the caption of the Build
button changes to Generate code.

Unchecked (default)

The build process generates and compiles code, and an executable is

built.

Dependencies

¢ Changes Build/Generate code button based on setting.

* Generates a make file only if Generate makefile option is checked.

Command line parameter
GenCodeOnly

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

No impact
No impact
No impact

No impact

7-43

7 Configuration Parameters Dialog Box Reference

More information

® “Generate Code Only”
® “Controlling the Compiling and Linking Phases of the Build Process”

Build/Generate code
Initiate build process

Provides one way of initiating the build process for a model or subsystem.

When you check the Generate code only option, the caption of the Build
button changes to Generate code.

Dependency

Operation based on Generate code only setting.

Command line parameter
GenCodeOnly

Recommended settings

Debugging Build

Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Build Button”

7-44

Comments

Comments

¢ “Include comments” on page 7-45
¢ “Simulink block comments” on page 7-46
e “Show eliminated blocks” on page 7-46

* “Verbose comments for SimulinkGlobal storage class” on page 7-47

Include comments
Specify what comments are in generated files

Checked (default)
Comments are placed in the generated files based on the selections in
the Auto generated comments pane.

Unchecked
Comments do not appear in the generated files.

Dependencies
Enables the following Auto generated comments pane options:

¢ Simulink block comments
¢ Show eliminated blocks

* Verbose comments for SimulinkGlobal storage class

Command line parameter
GenerateComments

Recommended settings

Debugging Set
Traceability Set
Efficiency No impact
Safety precaution No impact

7-45

7 Configuration Parameters Dialog Box Reference

More information
“Include Comments”

Simulink block comments

Insert Simulink block comments

Checked (default)
Automatically generated comments that describe a block’s code precede
that code in the generated file.

Unchecked
No comments are inserted.

Dependency

Enabled by Include comments.

Command line parameter
SimulinkBlockComments

Recommended settings

Debugging Set
Traceability Set
Efficiency No impact
Safety precaution No impact

More information
“Simulink Block Comments”

Show eliminated blocks
Insert eliminated blocks comments

7-46

Comments

Checked
Statements pertaining to blocks that were eliminated as the result of
optimizations (such as parameter inlining) appear as comments in the
generated code.

Unchecked (default)
No statements are inserted.

Dependency

Enabled by Include comments.

Command line parameter
ShowEliminatedStatements

Recommended settings

Debugging Set
Traceability Set
Efficiency No impact
Safety precaution No impact

More information
“Show Eliminated Blocks”

Verbose comments for SimulinkGlobal storage class

Generate comments in model parameter structure declaration

Controls the generation of comments in the model parameter structure
declaration in model prm.h. Parameter comments indicate parameter
variable names and the names of source blocks.

Checked
Parameter comments are generated regardless of the number of
parameters.

7-47

7 Configuration Parameters Dialog Box Reference

Unchecked (default)
Parameter comments are generated if less than 1000 parameters are
declared. This reduces the size of the generated file for models with a
large number of parameters.

Dependency

Enabled by Include comments.

Command line parameter
ForceParamTrailComments

Recommended settings

Debugging Set
Traceability Set
Efficiency No impact
Safety precaution No impact

More information
“Verbose Comments for SimulinkGlobal Storage Class”

7-48

Symbols

Symbols

Maximum identifier length

Specify maximum number of characters in generated function, type definition,
variable names

Default: 31
Minimum: 31
Maximum: 256

Allows you to limit the number of characters in function, type definition,
and variable names.

¢ Consider increasing identifier length for models having a deep hierarchical
structure.

® When generating code from a model that uses model referencing, the
Maximum identifier length must be large enough to accommodate the
root model name and the name mangling string (if any). A code generation
error occurs if Maximum identifier length is too small.

® Must be the same for both top and referenced models.

Command line parameter
MaxIdLength

Recommended settings

Debugging Set
Traceability >30
Efficiency No impact
Safety precaution No impact

7-49

7 Configuration Parameters Dialog Box Reference

More information

® “Maximum Identifier Length”

® “Parameterizing Referenced Models”

7-50

Custom Code

Custom Code

® “Source file” on page 7-51
e “Header file” on page 7-51

e “Initialize function” on page 7-52

¢ “Terminate function” on page 7-53

¢ “Include directories” on page 7-53

® “Source files” on page 7-54

e “Libraries” on page 7-55

Source file

Specify code appearing at top of generated file

Code is placed near the top of the generated model.c or model.cpp file,

outside of any function.

Command line parameter

CustomSource

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

No impact
No impact
No impact

No impact

More information
“Custom Code Options”

Header file

Specify code appearing near top of generated file

7-51

7 Configuration Parameters Dialog Box Reference

Code is placed near the top of the generated model.h header file.

Command line parameter
CustomHeaderCode

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Custom Code Options”

Initialize function

Specify code appearing in initialize function

Code is placed inside the model’s initialize function in the model.c or
model . cpp file.

Command line parameter
CustomInitializer

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

7-52

Custom Code

More information
“Custom Code Options”

Terminate function
Specify code appearing in terminate function

Specify code to appear in the model’s generated terminate function in the
model.c or model.cpp file.

Dependency

You should also select the Terminate function required check box on the
Real-Time Workshop > Interface pane.

Command line parameter
CustomTerminator

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Custom Code Options”

Include directories
Specify list of include directories

Specify a space-separated list of include directories to be added to the include
path when compiling the generated code.

® Specify absolute or relative paths to the directories.

7-53

7 Configuration Parameters Dialog Box Reference

7-54

® Relative paths must be relative to the directory containing your model files,
not relative to the build directory.

® The order in which you specify the directories is the order in which they are
searched for source and include files.

Command line parameter
CustomInclude

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Custom Code Options”

Source files

Specify list of source files

® Specify a space-separated list of source files to be compiled and linked with
the generated code.

¢ The filename is sufficient if the file is in the current MATLAB directory
or in one of the Include directories.

Command line parameter
CustomSourceCode

Custom Code

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

No impact
No impact
No impact

No impact

More information
“Custom Code Options”

Libraries
Specify list of additional libraries

List of additional libraries to be linked with. The libraries can be specified
with a full path or just a filename when located in the current MATLAB

directory or is listed as one of the Include directories.

Command line parameter
CustomLibrary

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

No impact
No impact
No impact

No impact

More information
“Custom Code Options”

7-55

7 Configuration Parameters Dialog Box Reference

7-56

Debug

® “Verbose build” on page 7-56

e “Retain .rtw file” on page 7-57

e “Profile TLC” on page 7-57

e “Start TLC debugger when generating code” on page 7-58
e “Start TLC coverage when generating code” on page 7-59

¢ “Enable TLC assertion” on page 7-60

Verbose build

Display code generation progress

Checked (default)
The MATLAB Command Window displays progress information
indicating code generation stages and compiler output during code
generation.

Unchecked
No progress information is displayed.

Command line parameter
RTWVerbose

Recommended settings

Debugging Set
Traceability No impact
Efficiency No impact
Safety precaution Set

More information
“Verbose Build”

Debug

Retain .rtw file

Specify model.rtw file retention

Checked
The model.rtw file is retained in the current build directory. This option
is useful if you are modifying the target files and need to look at the file.

Unchecked (default)
The model.rtw is deleted from the build directory at the end of the
build process.

Command line parameter
RetainRTWFile

Recommended settings

Debugging Set

Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Retain .rtw File”

Profile TLC

Profile execution time of TLC files

Checked
The TLC profiler analyzes the performance of TLC code executed during
code generation, and generates an HTML report.

Unchecked (default)
The performance is not profiled.

7-57

7 Configuration Parameters Dialog Box Reference

7-58

Command line parameter
ProfileTLC

Recommended settings

Debugging Set

Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Profile TLC”

Start TLC debugger when generating code
Specify use of TLC debugger

Checked
The TLC debugger starts during code generation.

Unchecked (default)
The TLC debugger is not started.

Tips

® You can also start the TLC debugger by entering the -dc argument into the
System target file field.

¢ To invoke the debugger and run a debugger script, enter the -df filename
argument into the System target file field.

Command line parameter
TLCDebug

Debug

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

Set
No impact
No impact

No impact

More information

“Start TLC Debugger When Generating Code”

Start TLC coverage when generating code

Generate TLC execution report

Checked

Generates . log files containing the number of times each line of TLC
code is executed during code generation.

Unchecked (default)
No report is generated.

Tip

You can also generate the TLC execution report by entering the -dg argument

into the System target file field.

Command line parameter
TLCCoverage

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

Set
No impact
No impact

No impact

7-59

7 Configuration Parameters Dialog Box Reference

More information
“Start TLC Coverage When Generating Code”

Enable TLC assertion
Produce TLC stack trace

Checked
Real-Time Workshop halts building if any user-supplied TLC file
contains an %assert directive that evaluates to FALSE.

Unchecked (default)
TLC assertion code is ignored.

Command line parameter
TLCAssert

Recommended settings

Debugging Set
Traceability No impact
Efficiency No impact
Safety precaution Set

More information
“Enable TLC Assertion”

7-60

Interface

Interface

o “Target floating-point math environment” on page 7-61
e “Utility function generation” on page 7-62

e “MAT-file variable name modifier” on page 7-63

® “Interface” on page 7-64

® “Signals in C API” on page 7-65

e “Parameters in C API” on page 7-66

* “Transport layer” on page 7-66

e “MEX-file arguments” on page 7-67

® “Static memory allocation” on page 7-68

Target floating-point math environment
Specify floating-point math library extension

C89/C90 (ANSI) (default)
Generates calls to the ISO/IEC 9899:1990 C standard math library for
floating-point functions.

C99 (ISO)
Generates calls to the ISO/IEC 9899:1999 C standard math library.

GNU99 (GNU)
Generates calls to the GNU gcc math library, which provides C99
extensions as defined by compiler option -std=gnu99.

Tips

® Before setting this option, verify that your compiler supports the library
you want to use. If you select an option value that your compiler does not
support, compiler errors can occur.

® Restriction — Stateflow supports only C89/C90(ANSI). Selecting a
different option has no effect on code generated for Stateflow components.

7-61

7 Configuration Parameters Dialog Box Reference

7-62

Command line parameter
GenFloatMathFcnCalls

Recommended settings

Debugging No impact
Traceability No impact
Efficiency Set

Safety precaution No impact

More information
“Target Floating-Point Math Environment”

Utility function generation
Specify utility functions generation location

Auto (default)
Operates as follows:

® When the model contains Model blocks, place utilities within the
slprj/target/ sharedutils directory.

¢ When the model does not contain Model blocks, place utilities in the
build directory (generally, in model.c or model.cpp).

Shared location
Directs code for utilities to be placed within the slprj directory in your
working directory.

Command line parameter
UtilityFuncGeneration

Interface

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

Shared
Shared
Shared

No impact

More information
“Utility Function Generation”

MAT-file variable name modifier
Select string added to MAT-file variable names

rt_ (default)
Adds a prefix string.

rt
Adds a suffix string.

none
Does not add a string.

Command line parameter
LogVarNameModifier

Recommended settings

Debugging
Traceability
Efficiency

Safety precaution

No impact
No impact
No impact

No impact

7-63

7 Configuration Parameters Dialog Box Reference

7-64

More information
“MAT-File Variable Name Modifier”

Interface
Specify included data interface (API)

None (default)

API is not included in generated code.

C-AP1
Use C-API data interface.

External mode
Use external data interface.

ASAP2
Use ASAP2 data interface.

Dependencies
The following are enabled by selecting C-API

® Signals in C API

¢ Parameters in C API
The following are enabled by selecting External mode

¢ Transport layer
e MEX-file arguments

* Static memory allocation

Command line parameter
GenerateASAP2

Interface

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

e “Interface”

¢ “Interface Option Dependencies”

Signals in C API

Generate C API signal structure

Checked (default)
Generates C API for global block outputs.

Unchecked
Does not generate C API signals.

Dependency
Enabled by selecting C-API data exchange interface.

Command line parameter
RTWCAPISignals

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

7-65

7 Configuration Parameters Dialog Box Reference

7-66

More information
“Generating C-API Files”

Parameters in C API

Generate C API parameter tuning structures

Checked (default)
Generate C API for global block and model parameters.

Unchecked
Do not generate C API parameters.

Dependency
Enabled by selecting C-API data exchange interface.

Command line parameter
RTWCAPIParams

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“Generating C-API Files”

Transport layer
Specify transport protocols for external mode communications

tepip (default)
Use a TCP/IP transport mechanism.

Interface

serial_win32
Use a serial transport mechanism.

Tip

The external interface MEX-file being used is not editable, it is specified in
extmode-transports.m.

Dependency

Enabled by selecting External mode data exchange interface.

Command line parameter
ExtModeTransport

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

® “Creating an External Mode Communication Channel”

o “Target Interfacing”

MEX-file arguments

Specify external mode MEX arguments.
For TCP/IP interfaces, ext_comm allows three optional arguments:

¢ The network name of your target
e A TCP/IP server port number
® Verbosity level (0 or 1)

7-67

7 Configuration Parameters Dialog Box Reference

For a serial transport, ext_serial win32_comm allows 3 optional arguments:

® Verbosity level (0 or 1)
® Serial port ID

® Baud rate (selected from the set 1200, 2400, 4800, 9600, 14400, 19200,
38400, 57600, 115200, with a default of 57600)

Dependency

Enabled by selecting External mode data exchange interface.

Command line parameter
ExtModeMexArgs

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information

e “Target Interfacing”

e “Client/Server Implementations”

Static memory allocation

Control memory buffer for external mode communication

Unchecked (default)
Use a static memory buffer for external mode instead of allocating
dynamic memory (calls to malloc).

7-68

Interface

Checked
Enables Static memory buffer size parameter. Enter number of bytes
to preallocate for external mode communications buffers in the target.
The default value is 1,000,000 bytes.

Tips

¢ If you enter too small a value for your application, external mode issues
and out-of-memory error.

¢ To determine how much memory you need to allocate, enable verbose mode
on the target to display the amount of memory it tries to allocate and is
available.

Dependencies

¢ Enabled by selecting External mode data exchange interface.

¢ Enables Static memory buffer size.

Command line parameter
ExtModeStaticAlloc

Recommended settings

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

More information
“External Mode Interface Options”

7-69

7 Configuration Parameters Dialog Box Reference

7-70

A

addCompileFlags function 2-2
addDefines function 2-5
addIncludeFiles function 2-8
addIncludePaths function 2-11
addLinkFlags function 2-14
addLinkObjects function 2-17
addSourceFiles function 2-22
addSourcePaths function 2-25
Async Interrupt block 5-2

blocks
Async Interrupt 5-2
Model Header
reference 5-8
Model Source
reference 5-9
Protected RT 5-10
RTW S-Function 5-11
System Derivatives 5-13
System Disable 5-14
System Enable 5-16
reference 5-15
System Outputs 5-17
System Start 5-18
System Terminate 5-19
System Update 5-20
Task Sync 5-21
Unprotected RT 5-25
blocks, Simulink
support for 3-1

C

compiler options

adding to build information 2-2

configuration parameters
code generation 6-2

diagnostics

model verification block enabling 7-22

hardware implementation

byte ordering 7-31

device type 7-23

emulation hardware (code generation
only) 7-33

number of bits: char 7-27

number of bits: int 7-28

number of bits: long 7-29

number of bits: native word size 7-30

number of bits: short 7-28

shift right on a signed integer as
arithmetic shift 7-32

signed integer division rounds to 7-32

optimization

application lifespan (days) 7-14

block reduction 7-8

conditional input branch execution 7-9

eliminate superfluous temporary
variables (expression folding) 7-19

enable local block outputs 7-15

ignore integer downcasts in folded
expressions 7-17

implement logic signals as boolean data
(vs. double) 7-10

inline invariant signals 7-18

inline parameters 7-12

loop unrolling threshold 7-19

remove code from floating-point to
integer conversions that wraps
out-of-range values 7-20

reuse block outputs 7-16

signal storage reuse 7-11

real-time workshop (comments)

include comments 7-45

show eliminated blocks 7-46

simulink block comments 7-46

verbose comments for simulinkglobal
storage class 7-47

Index-1

Index

Index-2

real-time workshop (custom code)
header file 7-51
include directories 7-53
initialize function 7-52
libraries 7-55
source file 7-51
source files 7-54
terminate function 7-53
real-time workshop (debug)
enable tlc assertion 7-60
profile tle 7-57
retain .rtw file 7-57
start tlc coverage when generating
code 7-59
start tlc debugger when generating
code 7-58
verbose build 7-56
real-time workshop (general)
build/generate code 7-44
generate code only 7-43
generate html report 7-37
generate makefile 7-40
language 7-36
launch report automatically 7-38
make command 7-40
system target file 7-35
template makefile 7-42
tlc options 7-39
real-time workshop (interface)
interface 7-64
mat-file variable name modifier 7-63
mex-file arguments 7-67
parameters in ¢ api 7-66
signals in ¢ api 7-65
static memory allocation 7-68
target floating-point math
environment 7-61
transport layer 7-66
utility function 7-62

real-time workshop (symbols)
maximum identifier length 7-49
solver
start time 7-2
stop time 7-3
tasking mode for periodic sample
times 7-5
type 7-3

D

derivatives

in custom code 5-13
disable code

in custom code 5-14
documentation

generated code 2-52

enable code
in custom code 5-15
extensions, file. See file extensions

F

file extensions

updating in build information 2-57
file separator

changing in build information 2-60
file types. See file extensions
findIncludeFiles function 2-28

G

getCompileFlags function 2-30
getDefines function 2-32
getIncludeFiles function 2-36
getIncludePaths function 2-39
getLinkFlags function 2-41
getSourceFiles function 2-44

Index

getSourcePaths function 2-47

H

header files
finding for inclusion in build information
object 2-28

include files
adding to build information 2-8
finding for inclusion in build information
object 2-28
getting from build information 2-36
include paths
adding to build information 2-11
getting from build information 2-39
initialization code
in custom code 5-16
interrupt service routines
creating 5-2

L

link objects
adding to build information 2-17
link options
adding to build information 2-14
getting from build information 2-41

M

macros
defining in build information 2-5
getting from build information 2-32
makefile
generating and executing for system 2-30
model header
in custom code 5-8
Model Header block

reference 5-8
Model Source block
reference 5-9
models
parameters for configuring 6-2

o

outputs code
in custom code 5-17

P

packNGo function 2-50
parameter structure

getting 2-54
parameters

for configuring model code generation and

targets 6-2

paths

updating in build information 2-57
project files

packaging for relocation 2-50
Protected RT block 5-10

rate transitions
protected 5-10
unprotected 5-25
rsimgetrtp function 2-54
RTW S-Function block 5-11
rtwreport function 2-52

S

S-function target

generating 5-11
separator, file

changing in build information 2-60
source code

Index-3

Index

in custom code 5-9 T
source files
adding to build information 2-22
getting from build information 2-44 task function
source paths creating 5-21
adding to build information 2-25 Task Sync block 5-21
getting from build information 2-47
startup code
in custom code 5-18
System Derivatives block 5-13

targets
parameters for configuring 6-2

termination code
in custom code 5-19

System Disable block 5-14 U

System Enable block 5-15 Unprotected RT block 5-25

System Initialize block 5-16 update code

System Outputs block 5-17 in custom code 5-20

System Start block 5-18 updateFilePathsAndExtensions function 2-57
System Terminate block 5-19 updateFileSeparator function 2-60

System Update block 5-20

Index-4

	toc
	Functions — By Category
	Build Information
	Project Documentation
	Rapid Simulation
	Target Language Compiler Library

	Functions — Alphabetical List
	Simulink Block Support
	Blocks — By Category
	Custom Code
	Interrupt Templates
	S-Function Target
	VxWorks

	Blocks — Alphabetical List
	Configuration Parameter Reference
	Configuration Parameters Dialog Box Reference
	Solver
	Start time
	Command line parameter
	Recommended settings

	Stop time
	Command line parameter
	Recommended settings

	Type
	Dependencies
	Command line parameter
	Recommended settings
	More information

	Tasking mode for periodic sample times
	Dependency
	Command line parameter
	Recommended settings
	More information

	Optimization
	Block reduction
	Tips
	Command line parameter
	Recommended settings
	More information

	Conditional input branch execution
	Command line parameter
	Recommended settings
	More information

	Implement logic signals as boolean data (vs. double)
	Dependency
	Command line parameter
	Recommended settings
	More information

	Signal storage reuse
	Dependencies
	Command line parameter
	Recommended settings
	More information

	Inline parameters
	Tips
	Dependencies
	Command line parameter
	Recommended settings
	More information

	Application lifespan (days)
	Tips
	Command line parameter
	Recommended settings
	More information

	Enable local block outputs
	Tips
	Dependency
	Command line parameter
	Recommended settings
	More information

	Reuse block outputs
	Dependency
	Command line parameter
	Recommended settings
	More information

	Ignore integer downcasts in folded expressions
	Tip
	Command line parameter
	Recommended settings
	More information

	Inline invariant signals
	Tips
	Dependency
	Command line parameter
	Recommended settings
	More information

	Eliminate superfluous temporary variables (Expression folding)
	Dependency
	Command line parameter
	Recommended settings
	More information

	Loop unrolling threshold
	Command line parameter
	Recommended settings
	More information

	Remove code from floating-point to integer conversions that wrap
	Tips
	Command line parameter
	Recommended settings
	More information

	Diagnostics
	Model Verification block enabling
	Command line parameter
	Recommended settings
	More information

	Hardware Implementation
	Device type
	Dependency
	Command line parameter
	Recommended settings
	More information

	Number of bits: char
	Tip
	Command line parameter
	Recommended settings
	More information

	Number of bits: short
	Tip
	Command line parameters
	Recommended settings
	More information

	Number of bits: int
	Tip
	Command line parameters
	Recommended settings
	More information

	Number of bits: long
	Tip
	Command line parameters
	Recommended settings
	More information

	Number of bits: native word size
	Tip
	Command line parameters
	Recommended settings
	More information

	Byte ordering
	Command line parameter
	Recommended settings
	More information

	Signed integer division rounds to
	Command line parameter
	Recommended settings
	More information

	Shift right on a signed integer as arithmetic shift
	Tips
	Command line parameter
	Recommended settings
	More information

	Emulation hardware (code generation only)
	Dependency
	Command line parameter
	Recommended settings
	More information

	Real-Time Workshop (General)
	System target file
	Tip
	Command line parameter
	Recommended settings
	More information

	Language
	Tip
	Command line parameter
	Recommended settings
	More information

	Generate HTML report
	Dependency
	Command line parameter
	Recommended settings
	More information

	Launch report automatically
	Dependency
	Command line parameter
	Recommended settings
	More information

	TLC options
	Tips
	Command line parameter
	Recommended settings
	More information

	Generate makefile
	Dependencies
	Command line parameter
	Recommended settings
	More information

	Make command
	Tip
	Dependency
	Command line parameter
	Recommended settings
	More information

	Template makefile
	Tips
	Dependency
	Command line parameter
	Recommended settings
	More information

	Generate code only
	Dependencies
	Command line parameter
	Recommended settings
	More information

	Build/Generate code
	Dependency
	Command line parameter
	Recommended settings
	More information

	Comments
	Include comments
	Dependencies
	Command line parameter
	Recommended settings
	More information

	Simulink block comments
	Dependency
	Command line parameter
	Recommended settings
	More information

	Show eliminated blocks
	Dependency
	Command line parameter
	Recommended settings
	More information

	Verbose comments for SimulinkGlobal storage class
	Dependency
	Command line parameter
	Recommended settings
	More information

	Symbols
	Maximum identifier length
	Command line parameter
	Recommended settings
	More information

	Custom Code
	Source file
	Command line parameter
	Recommended settings
	More information

	Header file
	Command line parameter
	Recommended settings
	More information

	Initialize function
	Command line parameter
	Recommended settings
	More information

	Terminate function
	Dependency
	Command line parameter
	Recommended settings
	More information

	Include directories
	Command line parameter
	Recommended settings
	More information

	Source files
	Command line parameter
	Recommended settings
	More information

	Libraries
	Command line parameter
	Recommended settings
	More information

	Debug
	Verbose build
	Command line parameter
	Recommended settings
	More information

	Retain .rtw file
	Command line parameter
	Recommended settings
	More information

	Profile TLC
	Command line parameter
	Recommended settings
	More information

	Start TLC debugger when generating code
	Tips
	Command line parameter
	Recommended settings
	More information

	Start TLC coverage when generating code
	Tip
	Command line parameter
	Recommended settings
	More information

	Enable TLC assertion
	Command line parameter
	Recommended settings
	More information

	Interface
	Target floating-point math environment
	Tips
	Command line parameter
	Recommended settings
	More information

	Utility function generation
	Command line parameter
	Recommended settings
	More information

	MAT-file variable name modifier
	Command line parameter
	Recommended settings
	More information

	Interface
	Dependencies
	Command line parameter
	Recommended settings
	More information

	Signals in C API
	Dependency
	Command line parameter
	Recommended settings
	More information

	Parameters in C API
	Dependency
	Command line parameter
	Recommended settings
	More information

	Transport layer
	Tip
	Dependency
	Command line parameter
	Recommended settings
	More information

	MEX-file arguments
	Dependency
	Command line parameter
	Recommended settings
	More information

	Static memory allocation
	Tips
	Dependencies
	Command line parameter
	Recommended settings
	More information

	Index

	tables
	Additional Math and Discrete: Additional Discrete
	Additional Math and Discrete: Increment/Decrement
	Continuous
	Discontinuities
	Discrete
	Logic and Bit Operations
	Lookup Tables
	Math Operations
	Model Verification
	Ports & Subsystems
	Signal Attributes
	Signal Routing
	Sinks
	Sources
	User-Defined
	Support Notes

